The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-fun...
Autor principal: | |
---|---|
Formato: | Artículo |
Lenguaje: | Inglés |
Publicado: |
Taylor & Francis Group
2020
|
Materias: | |
Acceso en línea: | http://repositorio.unne.edu.ar/handle/123456789/9111 |
Aporte de: |
id |
I48-R184-123456789-9111 |
---|---|
record_format |
dspace |
spelling |
I48-R184-123456789-91112025-03-06T11:00:46Z The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation Dorrego, Gustavo Abel Fractional differential equation Hilfer fractional derivative Caputo fractional derivative Riemann liouville fractional derivative Mittag leffler type function Fox's h function Integrals transforms Ultra hyperbolic operator In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated. Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-Nordeste; Argentina. 2020-06-02T22:47:49Z 2020-06-02T22:47:49Z 2016-03 Artículo Dorrego, Gustavo Abel, 2016. The Mittag Leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation. Integral Transforms and Special Functions. Reino Unido: Taylor & Francis Group, vol. 27, no. 5, p. 392-404. ISSN 1476-829. 1476-829 http://repositorio.unne.edu.ar/handle/123456789/9111 eng http://dx.doi.org/10.1080/10652469.2016.1144185 openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 392-404 application/pdf Taylor & Francis Group Integral transforms and special functions, 2016, vol. 27, no. 5, p. 392-404. |
institution |
Universidad Nacional del Nordeste |
institution_str |
I-48 |
repository_str |
R-184 |
collection |
RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
language |
Inglés |
topic |
Fractional differential equation Hilfer fractional derivative Caputo fractional derivative Riemann liouville fractional derivative Mittag leffler type function Fox's h function Integrals transforms Ultra hyperbolic operator |
spellingShingle |
Fractional differential equation Hilfer fractional derivative Caputo fractional derivative Riemann liouville fractional derivative Mittag leffler type function Fox's h function Integrals transforms Ultra hyperbolic operator Dorrego, Gustavo Abel The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation |
topic_facet |
Fractional differential equation Hilfer fractional derivative Caputo fractional derivative Riemann liouville fractional derivative Mittag leffler type function Fox's h function Integrals transforms Ultra hyperbolic operator |
description |
In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated. |
format |
Artículo |
author |
Dorrego, Gustavo Abel |
author_facet |
Dorrego, Gustavo Abel |
author_sort |
Dorrego, Gustavo Abel |
title |
The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation |
title_short |
The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation |
title_full |
The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation |
title_fullStr |
The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation |
title_full_unstemmed |
The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation |
title_sort |
mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation |
publisher |
Taylor & Francis Group |
publishDate |
2020 |
url |
http://repositorio.unne.edu.ar/handle/123456789/9111 |
work_keys_str_mv |
AT dorregogustavoabel themittaglefflerfunctionanditsapplicationtotheultrahyperbolictimefractionaldiffusionwaveequation AT dorregogustavoabel mittaglefflerfunctionanditsapplicationtotheultrahyperbolictimefractionaldiffusionwaveequation |
_version_ |
1832344809323364352 |