The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation

In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-fun...

Descripción completa

Detalles Bibliográficos
Autor principal: Dorrego, Gustavo Abel
Formato: Artículo
Lenguaje:Inglés
Publicado: Taylor & Francis Group 2020
Materias:
Acceso en línea:http://repositorio.unne.edu.ar/handle/123456789/9111
Aporte de:
id I48-R184-123456789-9111
record_format dspace
spelling I48-R184-123456789-91112025-03-06T11:00:46Z The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation Dorrego, Gustavo Abel Fractional differential equation Hilfer fractional derivative Caputo fractional derivative Riemann liouville fractional derivative Mittag leffler type function Fox's h function Integrals transforms Ultra hyperbolic operator In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated. Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-Nordeste; Argentina. 2020-06-02T22:47:49Z 2020-06-02T22:47:49Z 2016-03 Artículo Dorrego, Gustavo Abel, 2016. The Mittag Leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation. Integral Transforms and Special Functions. Reino Unido: Taylor & Francis Group, vol. 27, no. 5, p. 392-404. ISSN 1476-829. 1476-829 http://repositorio.unne.edu.ar/handle/123456789/9111 eng http://dx.doi.org/10.1080/10652469.2016.1144185 openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 392-404 application/pdf Taylor & Francis Group Integral transforms and special functions, 2016, vol. 27, no. 5, p. 392-404.
institution Universidad Nacional del Nordeste
institution_str I-48
repository_str R-184
collection RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
language Inglés
topic Fractional differential equation
Hilfer fractional derivative
Caputo fractional derivative
Riemann liouville fractional derivative
Mittag leffler type function
Fox's h function
Integrals transforms
Ultra hyperbolic operator
spellingShingle Fractional differential equation
Hilfer fractional derivative
Caputo fractional derivative
Riemann liouville fractional derivative
Mittag leffler type function
Fox's h function
Integrals transforms
Ultra hyperbolic operator
Dorrego, Gustavo Abel
The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
topic_facet Fractional differential equation
Hilfer fractional derivative
Caputo fractional derivative
Riemann liouville fractional derivative
Mittag leffler type function
Fox's h function
Integrals transforms
Ultra hyperbolic operator
description In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
format Artículo
author Dorrego, Gustavo Abel
author_facet Dorrego, Gustavo Abel
author_sort Dorrego, Gustavo Abel
title The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_short The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_full The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_fullStr The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_full_unstemmed The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
title_sort mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
publisher Taylor & Francis Group
publishDate 2020
url http://repositorio.unne.edu.ar/handle/123456789/9111
work_keys_str_mv AT dorregogustavoabel themittaglefflerfunctionanditsapplicationtotheultrahyperbolictimefractionaldiffusionwaveequation
AT dorregogustavoabel mittaglefflerfunctionanditsapplicationtotheultrahyperbolictimefractionaldiffusionwaveequation
_version_ 1832344809323364352