Pattern recognition via projection – based k – NN rules
Fil: Fraiman, Ricardo. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina.
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Documento de Trabajo Documento de trabajo draft |
| Lenguaje: | Inglés |
| Publicado: |
Universidad de San Andrés. Departamento de Matemáticas y Ciencias
2011
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/10908/553 |
| Aporte de: |
| id |
I37-R143-10908-553 |
|---|---|
| record_format |
dspace |
| spelling |
I37-R143-10908-5532024-09-21T06:27:13Z Pattern recognition via projection – based k – NN rules Fraiman, Ricardo Justel, Ana Svarc, Marcela Multivariate analysis Robust statistics Pattern perception Fil: Fraiman, Ricardo. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina. Fil: Justel, Ana. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina. Fil: Svarc, Marcela. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina. We introduce a new procedure for pattern recognition, based on the concepts of random projections and nearest neighbors. It can be thought as an improvement of the classical nearest neighbors classification rules. Besides the concept of neighbors we introduce the notion of district, a larger set which will be projected. Then we apply one dimensional k-NN methods to the projected data on randomly selected directions. In this way we are able to provide a method with some robustness properties and more accurate to handle high dimensional data. The procedure is also universally consistent. We challenge the method with the Isolet data where we obtain a very high classification score. 2011-09-19T13:48:44Z 2011-09-19T13:48:44Z 2008-06 Documento de Trabajo info:eu-repo/semantics/workingPaper info:ar-repo/semantics/documento de trabajo info:eu-repo/semantics/draft http://hdl.handle.net/10908/553 eng info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf Universidad de San Andrés. Departamento de Matemáticas y Ciencias |
| institution |
Universidad de San Andrés |
| institution_str |
I-37 |
| repository_str |
R-143 |
| collection |
Repositorio Digital - Universidad de San Andrés (UdeSa) |
| language |
Inglés |
| topic |
Multivariate analysis Robust statistics Pattern perception |
| spellingShingle |
Multivariate analysis Robust statistics Pattern perception Fraiman, Ricardo Justel, Ana Svarc, Marcela Pattern recognition via projection – based k – NN rules |
| topic_facet |
Multivariate analysis Robust statistics Pattern perception |
| description |
Fil: Fraiman, Ricardo. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina. |
| format |
Documento de Trabajo Documento de trabajo Documento de trabajo draft |
| author |
Fraiman, Ricardo Justel, Ana Svarc, Marcela |
| author_facet |
Fraiman, Ricardo Justel, Ana Svarc, Marcela |
| author_sort |
Fraiman, Ricardo |
| title |
Pattern recognition via projection – based k – NN rules |
| title_short |
Pattern recognition via projection – based k – NN rules |
| title_full |
Pattern recognition via projection – based k – NN rules |
| title_fullStr |
Pattern recognition via projection – based k – NN rules |
| title_full_unstemmed |
Pattern recognition via projection – based k – NN rules |
| title_sort |
pattern recognition via projection – based k – nn rules |
| publisher |
Universidad de San Andrés. Departamento de Matemáticas y Ciencias |
| publishDate |
2011 |
| url |
http://hdl.handle.net/10908/553 |
| work_keys_str_mv |
AT fraimanricardo patternrecognitionviaprojectionbasedknnrules AT justelana patternrecognitionviaprojectionbasedknnrules AT svarcmarcela patternrecognitionviaprojectionbasedknnrules |
| _version_ |
1816376861558571008 |