Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities

"Pulse propagation in nonlinear waveguides is most frequently modeled by resorting to the generalized nonlinear Schrödinger equation (GNLSE). In recent times, exciting new materials with peculiar nonlinear properties, such as negative nonlinear coefficients and a zero-nonlinearity wavelength, h...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonetti, Juan I., Linale, N., Sánchez, Alfredo D., Hernández, Santiago M., Fierens, Pablo Ignacio, Grosz, Diego
Formato: Artículos de Publicaciones Periódicas acceptedVersion
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/1920
Aporte de:
id I32-R138-123456789-1920
record_format dspace
spelling I32-R138-123456789-19202022-12-07T13:06:11Z Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities Bonetti, Juan I. Linale, N. Sánchez, Alfredo D. Hernández, Santiago M. Fierens, Pablo Ignacio Grosz, Diego DISPERSION RAMAN ECUACIONES DE SCHRÖDINGER SOLITONES METAMATERIALES GUIAS DE ONDAS "Pulse propagation in nonlinear waveguides is most frequently modeled by resorting to the generalized nonlinear Schrödinger equation (GNLSE). In recent times, exciting new materials with peculiar nonlinear properties, such as negative nonlinear coefficients and a zero-nonlinearity wavelength, have been demonstrated. Unfortunately, the GNLSE may lead to unphysical results in these cases since, in general, it does not preserve the number of photons and, in the presence of a negative nonlinearity, predicts a blue shift due to Raman scattering. In this paper, we put forth a modified GNLSE that can be used to model the propagation in media with an arbitrary, even negative, nonlinear coefficient. This novel photon-conserving GNLSE (pcGNLSE) ensures preservation of the photon number and can be solved by the same tried and trusted numerical algorithms used for the standard GNLSE. Finally, we compare results for soliton dynamics in fibers with different nonlinear coefficients obtained with the pcGNLSE and the GNLSE." 2020-03-27T05:02:31Z 2020-03-27T05:02:31Z 2020 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 0740-3224 http://ri.itba.edu.ar/handle/123456789/1920 en info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.377891 application/pdf
institution Instituto Tecnológico de Buenos Aires (ITBA)
institution_str I-32
repository_str R-138
collection Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA)
language Inglés
topic DISPERSION RAMAN
ECUACIONES DE SCHRÖDINGER
SOLITONES
METAMATERIALES
GUIAS DE ONDAS
spellingShingle DISPERSION RAMAN
ECUACIONES DE SCHRÖDINGER
SOLITONES
METAMATERIALES
GUIAS DE ONDAS
Bonetti, Juan I.
Linale, N.
Sánchez, Alfredo D.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Grosz, Diego
Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities
topic_facet DISPERSION RAMAN
ECUACIONES DE SCHRÖDINGER
SOLITONES
METAMATERIALES
GUIAS DE ONDAS
description "Pulse propagation in nonlinear waveguides is most frequently modeled by resorting to the generalized nonlinear Schrödinger equation (GNLSE). In recent times, exciting new materials with peculiar nonlinear properties, such as negative nonlinear coefficients and a zero-nonlinearity wavelength, have been demonstrated. Unfortunately, the GNLSE may lead to unphysical results in these cases since, in general, it does not preserve the number of photons and, in the presence of a negative nonlinearity, predicts a blue shift due to Raman scattering. In this paper, we put forth a modified GNLSE that can be used to model the propagation in media with an arbitrary, even negative, nonlinear coefficient. This novel photon-conserving GNLSE (pcGNLSE) ensures preservation of the photon number and can be solved by the same tried and trusted numerical algorithms used for the standard GNLSE. Finally, we compare results for soliton dynamics in fibers with different nonlinear coefficients obtained with the pcGNLSE and the GNLSE."
format Artículos de Publicaciones Periódicas
acceptedVersion
author Bonetti, Juan I.
Linale, N.
Sánchez, Alfredo D.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Grosz, Diego
author_facet Bonetti, Juan I.
Linale, N.
Sánchez, Alfredo D.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Grosz, Diego
author_sort Bonetti, Juan I.
title Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities
title_short Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities
title_full Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities
title_fullStr Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities
title_full_unstemmed Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities
title_sort photon-conserving generalized nonlinear schrödinger equation for frequency-dependent nonlinearities
publishDate 2020
url http://ri.itba.edu.ar/handle/123456789/1920
work_keys_str_mv AT bonettijuani photonconservinggeneralizednonlinearschrodingerequationforfrequencydependentnonlinearities
AT linalen photonconservinggeneralizednonlinearschrodingerequationforfrequencydependentnonlinearities
AT sanchezalfredod photonconservinggeneralizednonlinearschrodingerequationforfrequencydependentnonlinearities
AT hernandezsantiagom photonconservinggeneralizednonlinearschrodingerequationforfrequencydependentnonlinearities
AT fierenspabloignacio photonconservinggeneralizednonlinearschrodingerequationforfrequencydependentnonlinearities
AT groszdiego photonconservinggeneralizednonlinearschrodingerequationforfrequencydependentnonlinearities
_version_ 1765660915688013824