An H-system for a revolution surface without boundary

We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depend...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amster, P., De Nápoli, P., Mariani, M.C.
Formato: Artículo publishedVersion
Publicado: 2006
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10853375_v2006_n_p_Amster_oai
Aporte de:
id I28-R145-paper_10853375_v2006_n_p_Amster_oai
record_format dspace
spelling I28-R145-paper_10853375_v2006_n_p_Amster_oai2024-08-16 Amster, P. De Nápoli, P. Mariani, M.C. 2006 We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H. Copyright © 2006 P. Amster et al. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:De Nápoli, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Abstr. Appl. Anal. 2006;2006 An H-system for a revolution surface without boundary info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10853375_v2006_n_p_Amster_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
description We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H. Copyright © 2006 P. Amster et al.
format Artículo
Artículo
publishedVersion
author Amster, P.
De Nápoli, P.
Mariani, M.C.
spellingShingle Amster, P.
De Nápoli, P.
Mariani, M.C.
An H-system for a revolution surface without boundary
author_facet Amster, P.
De Nápoli, P.
Mariani, M.C.
author_sort Amster, P.
title An H-system for a revolution surface without boundary
title_short An H-system for a revolution surface without boundary
title_full An H-system for a revolution surface without boundary
title_fullStr An H-system for a revolution surface without boundary
title_full_unstemmed An H-system for a revolution surface without boundary
title_sort h-system for a revolution surface without boundary
publishDate 2006
url http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10853375_v2006_n_p_Amster_oai
work_keys_str_mv AT amsterp anhsystemforarevolutionsurfacewithoutboundary
AT denapolip anhsystemforarevolutionsurfacewithoutboundary
AT marianimc anhsystemforarevolutionsurfacewithoutboundary
AT amsterp hsystemforarevolutionsurfacewithoutboundary
AT denapolip hsystemforarevolutionsurfacewithoutboundary
AT marianimc hsystemforarevolutionsurfacewithoutboundary
_version_ 1809357113499058176