Renormalization group and nonequilibrium action in stochastic field theory

We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory te...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zanella, J., Calzetta, E.
Formato: Artículo publishedVersion
Publicado: 2002
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_1063651X_v66_n3_p_Zanella_oai
Aporte de:
id I28-R145-paper_1063651X_v66_n3_p_Zanella_oai
record_format dspace
spelling I28-R145-paper_1063651X_v66_n3_p_Zanella_oai2024-08-16 Zanella, J. Calzetta, E. 2002 We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society. Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Phys Rev E. 2002;66(3) Anisotropy Cameras Charge coupled devices Electric conductivity Electric field effects Electric potential Electrodes Electrolysis Isotropic instability Optical stripes Polymer spacers Williams domain (WD) Nematic liquid crystals article Renormalization group and nonequilibrium action in stochastic field theory info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_1063651X_v66_n3_p_Zanella_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Anisotropy
Cameras
Charge coupled devices
Electric conductivity
Electric field effects
Electric potential
Electrodes
Electrolysis
Isotropic instability
Optical stripes
Polymer spacers
Williams domain (WD)
Nematic liquid crystals
article
spellingShingle Anisotropy
Cameras
Charge coupled devices
Electric conductivity
Electric field effects
Electric potential
Electrodes
Electrolysis
Isotropic instability
Optical stripes
Polymer spacers
Williams domain (WD)
Nematic liquid crystals
article
Zanella, J.
Calzetta, E.
Renormalization group and nonequilibrium action in stochastic field theory
topic_facet Anisotropy
Cameras
Charge coupled devices
Electric conductivity
Electric field effects
Electric potential
Electrodes
Electrolysis
Isotropic instability
Optical stripes
Polymer spacers
Williams domain (WD)
Nematic liquid crystals
article
description We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society.
format Artículo
Artículo
publishedVersion
author Zanella, J.
Calzetta, E.
author_facet Zanella, J.
Calzetta, E.
author_sort Zanella, J.
title Renormalization group and nonequilibrium action in stochastic field theory
title_short Renormalization group and nonequilibrium action in stochastic field theory
title_full Renormalization group and nonequilibrium action in stochastic field theory
title_fullStr Renormalization group and nonequilibrium action in stochastic field theory
title_full_unstemmed Renormalization group and nonequilibrium action in stochastic field theory
title_sort renormalization group and nonequilibrium action in stochastic field theory
publishDate 2002
url http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_1063651X_v66_n3_p_Zanella_oai
work_keys_str_mv AT zanellaj renormalizationgroupandnonequilibriumactioninstochasticfieldtheory
AT calzettae renormalizationgroupandnonequilibriumactioninstochasticfieldtheory
_version_ 1809357109785001984