Renormalization group and nonequilibrium action in stochastic field theory
We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory te...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_1063651X_v66_n3_p_Zanella_oai |
Aporte de: |
id |
I28-R145-paper_1063651X_v66_n3_p_Zanella_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_1063651X_v66_n3_p_Zanella_oai2024-08-16 Zanella, J. Calzetta, E. 2002 We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society. Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Phys Rev E. 2002;66(3) Anisotropy Cameras Charge coupled devices Electric conductivity Electric field effects Electric potential Electrodes Electrolysis Isotropic instability Optical stripes Polymer spacers Williams domain (WD) Nematic liquid crystals article Renormalization group and nonequilibrium action in stochastic field theory info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_1063651X_v66_n3_p_Zanella_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Anisotropy Cameras Charge coupled devices Electric conductivity Electric field effects Electric potential Electrodes Electrolysis Isotropic instability Optical stripes Polymer spacers Williams domain (WD) Nematic liquid crystals article |
spellingShingle |
Anisotropy Cameras Charge coupled devices Electric conductivity Electric field effects Electric potential Electrodes Electrolysis Isotropic instability Optical stripes Polymer spacers Williams domain (WD) Nematic liquid crystals article Zanella, J. Calzetta, E. Renormalization group and nonequilibrium action in stochastic field theory |
topic_facet |
Anisotropy Cameras Charge coupled devices Electric conductivity Electric field effects Electric potential Electrodes Electrolysis Isotropic instability Optical stripes Polymer spacers Williams domain (WD) Nematic liquid crystals article |
description |
We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society. |
format |
Artículo Artículo publishedVersion |
author |
Zanella, J. Calzetta, E. |
author_facet |
Zanella, J. Calzetta, E. |
author_sort |
Zanella, J. |
title |
Renormalization group and nonequilibrium action in stochastic field theory |
title_short |
Renormalization group and nonequilibrium action in stochastic field theory |
title_full |
Renormalization group and nonequilibrium action in stochastic field theory |
title_fullStr |
Renormalization group and nonequilibrium action in stochastic field theory |
title_full_unstemmed |
Renormalization group and nonequilibrium action in stochastic field theory |
title_sort |
renormalization group and nonequilibrium action in stochastic field theory |
publishDate |
2002 |
url |
http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_1063651X_v66_n3_p_Zanella_oai |
work_keys_str_mv |
AT zanellaj renormalizationgroupandnonequilibriumactioninstochasticfieldtheory AT calzettae renormalizationgroupandnonequilibriumactioninstochasticfieldtheory |
_version_ |
1809357109785001984 |