Bogomolny equations for vortices in the noncommutative torus

We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Forgács, P., Lozano, G.S., Moreno, E.F., Schaposnik, F.A.
Formato: Artículo publishedVersion
Publicado: 2005
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_Forgacs
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10298479_v_n7_p2021_Forgacs_oai
Aporte de:
id I28-R145-paper_10298479_v_n7_p2021_Forgacs_oai
record_format dspace
spelling I28-R145-paper_10298479_v_n7_p2021_Forgacs_oai2024-08-16 Forgács, P. Lozano, G.S. Moreno, E.F. Schaposnik, F.A. 2005 We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model. © SISSA 2005. application/pdf http://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_Forgacs info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. High Energy Phys. 2005(7):2021-2039 Non-Commutative Geometry Solitons Monopoles and Instantons Bogomolny equations for vortices in the noncommutative torus info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10298479_v_n7_p2021_Forgacs_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Non-Commutative Geometry
Solitons Monopoles and Instantons
spellingShingle Non-Commutative Geometry
Solitons Monopoles and Instantons
Forgács, P.
Lozano, G.S.
Moreno, E.F.
Schaposnik, F.A.
Bogomolny equations for vortices in the noncommutative torus
topic_facet Non-Commutative Geometry
Solitons Monopoles and Instantons
description We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model. © SISSA 2005.
format Artículo
Artículo
publishedVersion
author Forgács, P.
Lozano, G.S.
Moreno, E.F.
Schaposnik, F.A.
author_facet Forgács, P.
Lozano, G.S.
Moreno, E.F.
Schaposnik, F.A.
author_sort Forgács, P.
title Bogomolny equations for vortices in the noncommutative torus
title_short Bogomolny equations for vortices in the noncommutative torus
title_full Bogomolny equations for vortices in the noncommutative torus
title_fullStr Bogomolny equations for vortices in the noncommutative torus
title_full_unstemmed Bogomolny equations for vortices in the noncommutative torus
title_sort bogomolny equations for vortices in the noncommutative torus
publishDate 2005
url http://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_Forgacs
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10298479_v_n7_p2021_Forgacs_oai
work_keys_str_mv AT forgacsp bogomolnyequationsforvorticesinthenoncommutativetorus
AT lozanogs bogomolnyequationsforvorticesinthenoncommutativetorus
AT morenoef bogomolnyequationsforvorticesinthenoncommutativetorus
AT schaposnikfa bogomolnyequationsforvorticesinthenoncommutativetorus
_version_ 1809357106320506880