Bogomolny equations for vortices in the noncommutative torus
We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_Forgacs https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10298479_v_n7_p2021_Forgacs_oai |
Aporte de: |
id |
I28-R145-paper_10298479_v_n7_p2021_Forgacs_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_10298479_v_n7_p2021_Forgacs_oai2024-08-16 Forgács, P. Lozano, G.S. Moreno, E.F. Schaposnik, F.A. 2005 We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model. © SISSA 2005. application/pdf http://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_Forgacs info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. High Energy Phys. 2005(7):2021-2039 Non-Commutative Geometry Solitons Monopoles and Instantons Bogomolny equations for vortices in the noncommutative torus info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10298479_v_n7_p2021_Forgacs_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Non-Commutative Geometry Solitons Monopoles and Instantons |
spellingShingle |
Non-Commutative Geometry Solitons Monopoles and Instantons Forgács, P. Lozano, G.S. Moreno, E.F. Schaposnik, F.A. Bogomolny equations for vortices in the noncommutative torus |
topic_facet |
Non-Commutative Geometry Solitons Monopoles and Instantons |
description |
We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model. © SISSA 2005. |
format |
Artículo Artículo publishedVersion |
author |
Forgács, P. Lozano, G.S. Moreno, E.F. Schaposnik, F.A. |
author_facet |
Forgács, P. Lozano, G.S. Moreno, E.F. Schaposnik, F.A. |
author_sort |
Forgács, P. |
title |
Bogomolny equations for vortices in the noncommutative torus |
title_short |
Bogomolny equations for vortices in the noncommutative torus |
title_full |
Bogomolny equations for vortices in the noncommutative torus |
title_fullStr |
Bogomolny equations for vortices in the noncommutative torus |
title_full_unstemmed |
Bogomolny equations for vortices in the noncommutative torus |
title_sort |
bogomolny equations for vortices in the noncommutative torus |
publishDate |
2005 |
url |
http://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_Forgacs https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10298479_v_n7_p2021_Forgacs_oai |
work_keys_str_mv |
AT forgacsp bogomolnyequationsforvorticesinthenoncommutativetorus AT lozanogs bogomolnyequationsforvorticesinthenoncommutativetorus AT morenoef bogomolnyequationsforvorticesinthenoncommutativetorus AT schaposnikfa bogomolnyequationsforvorticesinthenoncommutativetorus |
_version_ |
1809357106320506880 |