Randomness and universal machines

The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Figueira, S., Stephan, F., Wu, G.
Formato: Artículo publishedVersion
Publicado: 2006
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_Figueira
http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0885064X_v22_n6_p738_Figueira_oai
Aporte de:
id I28-R145-paper_0885064X_v22_n6_p738_Figueira_oai
record_format dspace
spelling I28-R145-paper_0885064X_v22_n6_p738_Figueira_oai2020-10-19 Figueira, S. Stephan, F. Wu, G. 2006 The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved. Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_Figueira info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Complexity 2006;22(6):738-751 Algorithmic randomness Halting probability Kolmogorov complexity Recursion theory Truth-table degrees Universal machines Ω-numbers Algorithms Turing machines Algorithmic randomness Halting probability Kolmogorov complexity Recursion theory Truth-table degrees Universal machines Ω-numbers Random number generation Randomness and universal machines info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0885064X_v22_n6_p738_Figueira_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Algorithms
Turing machines
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Random number generation
spellingShingle Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Algorithms
Turing machines
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Random number generation
Figueira, S.
Stephan, F.
Wu, G.
Randomness and universal machines
topic_facet Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Algorithms
Turing machines
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Random number generation
description The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Figueira, S.
Stephan, F.
Wu, G.
author_facet Figueira, S.
Stephan, F.
Wu, G.
author_sort Figueira, S.
title Randomness and universal machines
title_short Randomness and universal machines
title_full Randomness and universal machines
title_fullStr Randomness and universal machines
title_full_unstemmed Randomness and universal machines
title_sort randomness and universal machines
publishDate 2006
url http://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_Figueira
http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0885064X_v22_n6_p738_Figueira_oai
work_keys_str_mv AT figueiras randomnessanduniversalmachines
AT stephanf randomnessanduniversalmachines
AT wug randomnessanduniversalmachines
_version_ 1766026713810075648