Normalization of rings

We present a new algorithm to compute the integral closure of a reduced Noetherian ring in its total ring of fractions. A modification, applicable in positive characteristic, where actually all computations are over the original ring, is also described. The new algorithm of this paper has been imple...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Greuel, G.-M., Laplagne, S., Seelisch, F.
Formato: Artículo publishedVersion
Publicado: 2010
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07477171_v45_n9_p887_Greuel
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v45_n9_p887_Greuel_oai
Aporte de:
id I28-R145-paper_07477171_v45_n9_p887_Greuel_oai
record_format dspace
spelling I28-R145-paper_07477171_v45_n9_p887_Greuel_oai2024-08-16 Greuel, G.-M. Laplagne, S. Seelisch, F. 2010 We present a new algorithm to compute the integral closure of a reduced Noetherian ring in its total ring of fractions. A modification, applicable in positive characteristic, where actually all computations are over the original ring, is also described. The new algorithm of this paper has been implemented in Singular, for localizations of affine rings with respect to arbitrary monomial orderings. Benchmark tests show that it is in general much faster than any other implementation of normalization algorithms known to us. © 2010 Elsevier Ltd. Fil:Laplagne, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_07477171_v45_n9_p887_Greuel info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Symb. Comput. 2010;45(9):887-901 Grauert-Remmert criterion Integral closure Normalization Test ideal Normalization of rings info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v45_n9_p887_Greuel_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Grauert-Remmert criterion
Integral closure
Normalization
Test ideal
spellingShingle Grauert-Remmert criterion
Integral closure
Normalization
Test ideal
Greuel, G.-M.
Laplagne, S.
Seelisch, F.
Normalization of rings
topic_facet Grauert-Remmert criterion
Integral closure
Normalization
Test ideal
description We present a new algorithm to compute the integral closure of a reduced Noetherian ring in its total ring of fractions. A modification, applicable in positive characteristic, where actually all computations are over the original ring, is also described. The new algorithm of this paper has been implemented in Singular, for localizations of affine rings with respect to arbitrary monomial orderings. Benchmark tests show that it is in general much faster than any other implementation of normalization algorithms known to us. © 2010 Elsevier Ltd.
format Artículo
Artículo
publishedVersion
author Greuel, G.-M.
Laplagne, S.
Seelisch, F.
author_facet Greuel, G.-M.
Laplagne, S.
Seelisch, F.
author_sort Greuel, G.-M.
title Normalization of rings
title_short Normalization of rings
title_full Normalization of rings
title_fullStr Normalization of rings
title_full_unstemmed Normalization of rings
title_sort normalization of rings
publishDate 2010
url http://hdl.handle.net/20.500.12110/paper_07477171_v45_n9_p887_Greuel
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v45_n9_p887_Greuel_oai
work_keys_str_mv AT greuelgm normalizationofrings
AT laplagnes normalizationofrings
AT seelischf normalizationofrings
_version_ 1809356912445095936