Neumann Casimir effect: A singular boundary-interaction approach
Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and tr...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03702693_v690_n2_p189_Fosco https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03702693_v690_n2_p189_Fosco_oai |
Aporte de: |
id |
I28-R145-paper_03702693_v690_n2_p189_Fosco_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_03702693_v690_n2_p189_Fosco_oai2024-08-16 Fosco, C.D. Lombardo, F.C. Mazzitelli, F.D. 2010 Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions. © 2010 Elsevier B.V. All rights reserved. Fil:Lombardo, F.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_03702693_v690_n2_p189_Fosco info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Phys Lett Sect B Nucl Elem Part High-Energy Phys 2010;690(2):189-195 Boundary conditions Casimir effect Neumann Casimir effect: A singular boundary-interaction approach info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03702693_v690_n2_p189_Fosco_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Boundary conditions Casimir effect |
spellingShingle |
Boundary conditions Casimir effect Fosco, C.D. Lombardo, F.C. Mazzitelli, F.D. Neumann Casimir effect: A singular boundary-interaction approach |
topic_facet |
Boundary conditions Casimir effect |
description |
Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions. © 2010 Elsevier B.V. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Fosco, C.D. Lombardo, F.C. Mazzitelli, F.D. |
author_facet |
Fosco, C.D. Lombardo, F.C. Mazzitelli, F.D. |
author_sort |
Fosco, C.D. |
title |
Neumann Casimir effect: A singular boundary-interaction approach |
title_short |
Neumann Casimir effect: A singular boundary-interaction approach |
title_full |
Neumann Casimir effect: A singular boundary-interaction approach |
title_fullStr |
Neumann Casimir effect: A singular boundary-interaction approach |
title_full_unstemmed |
Neumann Casimir effect: A singular boundary-interaction approach |
title_sort |
neumann casimir effect: a singular boundary-interaction approach |
publishDate |
2010 |
url |
http://hdl.handle.net/20.500.12110/paper_03702693_v690_n2_p189_Fosco https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03702693_v690_n2_p189_Fosco_oai |
work_keys_str_mv |
AT foscocd neumanncasimireffectasingularboundaryinteractionapproach AT lombardofc neumanncasimireffectasingularboundaryinteractionapproach AT mazzitellifd neumanncasimireffectasingularboundaryinteractionapproach |
_version_ |
1809357099495325696 |