An example of a computable absolutely normal number

A recursive reformulation of Sierpinski's construction of an absolutely normal number was provided. The reformulation produced a computable absolute normal number in base 2, which was normal in any scale considered. The construction was adapted to define numbers in any other bases and distinct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Becher, V., Figueira, S.
Formato: Artículo publishedVersion
Publicado: 2002
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03043975_v270_n1-2_p947_Becher
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03043975_v270_n1-2_p947_Becher_oai
Aporte de:
id I28-R145-paper_03043975_v270_n1-2_p947_Becher_oai
record_format dspace
spelling I28-R145-paper_03043975_v270_n1-2_p947_Becher_oai2024-08-16 Becher, V. Figueira, S. 2002 A recursive reformulation of Sierpinski's construction of an absolutely normal number was provided. The reformulation produced a computable absolute normal number in base 2, which was normal in any scale considered. The construction was adapted to define numbers in any other bases and distinct numbers were obtained for different bases. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_03043975_v270_n1-2_p947_Becher info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Theor Comput Sci 2002;270(1-2):947-958 Algorithms Approximation theory Convergence of numerical methods Number theory Probability Set theory Absolutely normal numbers Recursive functions An example of a computable absolutely normal number info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03043975_v270_n1-2_p947_Becher_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Algorithms
Approximation theory
Convergence of numerical methods
Number theory
Probability
Set theory
Absolutely normal numbers
Recursive functions
spellingShingle Algorithms
Approximation theory
Convergence of numerical methods
Number theory
Probability
Set theory
Absolutely normal numbers
Recursive functions
Becher, V.
Figueira, S.
An example of a computable absolutely normal number
topic_facet Algorithms
Approximation theory
Convergence of numerical methods
Number theory
Probability
Set theory
Absolutely normal numbers
Recursive functions
description A recursive reformulation of Sierpinski's construction of an absolutely normal number was provided. The reformulation produced a computable absolute normal number in base 2, which was normal in any scale considered. The construction was adapted to define numbers in any other bases and distinct numbers were obtained for different bases.
format Artículo
Artículo
publishedVersion
author Becher, V.
Figueira, S.
author_facet Becher, V.
Figueira, S.
author_sort Becher, V.
title An example of a computable absolutely normal number
title_short An example of a computable absolutely normal number
title_full An example of a computable absolutely normal number
title_fullStr An example of a computable absolutely normal number
title_full_unstemmed An example of a computable absolutely normal number
title_sort example of a computable absolutely normal number
publishDate 2002
url http://hdl.handle.net/20.500.12110/paper_03043975_v270_n1-2_p947_Becher
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03043975_v270_n1-2_p947_Becher_oai
work_keys_str_mv AT becherv anexampleofacomputableabsolutelynormalnumber
AT figueiras anexampleofacomputableabsolutelynormalnumber
AT becherv exampleofacomputableabsolutelynormalnumber
AT figueiras exampleofacomputableabsolutelynormalnumber
_version_ 1809357095418462208