Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum cliqu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonomo, F., Chudnovsky, M., Durán, G.
Formato: Artículo publishedVersion
Publicado: 2008
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0166218X_v156_n7_p1058_Bonomo_oai
Aporte de:
id I28-R145-paper_0166218X_v156_n7_p1058_Bonomo_oai
record_format dspace
spelling I28-R145-paper_0166218X_v156_n7_p1058_Bonomo_oai2024-08-16 Bonomo, F. Chudnovsky, M. Durán, G. 2008 A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Discrete Appl Math 2008;156(7):1058-1082 Claw-free graphs Clique-perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Image processing Mathematical models Number theory Problem solving Set theory Claw free graphs Clique perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Graph theory Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0166218X_v156_n7_p1058_Bonomo_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
spellingShingle Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
Bonomo, F.
Chudnovsky, M.
Durán, G.
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
topic_facet Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
description A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved.
format Artículo
Artículo
publishedVersion
author Bonomo, F.
Chudnovsky, M.
Durán, G.
author_facet Bonomo, F.
Chudnovsky, M.
Durán, G.
author_sort Bonomo, F.
title Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_short Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_full Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_fullStr Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_full_unstemmed Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_sort partial characterizations of clique-perfect graphs i: subclasses of claw-free graphs
publishDate 2008
url http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0166218X_v156_n7_p1058_Bonomo_oai
work_keys_str_mv AT bonomof partialcharacterizationsofcliqueperfectgraphsisubclassesofclawfreegraphs
AT chudnovskym partialcharacterizationsofcliqueperfectgraphsisubclassesofclawfreegraphs
AT durang partialcharacterizationsofcliqueperfectgraphsisubclassesofclawfreegraphs
_version_ 1809357090765930496