Robust nonparametric inference for the median
We consider the problem of constructing robust nonparametric confidence intervals and tests of hypothesis for the median when the data distribution is unknown and the data may contain a small fraction of contamination. We propose a modification of the sign test (and its associated confidence interva...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00905364_v32_n5_p1841_Yohai https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00905364_v32_n5_p1841_Yohai_oai |
Aporte de: |
id |
I28-R145-paper_00905364_v32_n5_p1841_Yohai_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00905364_v32_n5_p1841_Yohai_oai2024-08-16 Yohai, V.J. Zamar, R.H. 2004 We consider the problem of constructing robust nonparametric confidence intervals and tests of hypothesis for the median when the data distribution is unknown and the data may contain a small fraction of contamination. We propose a modification of the sign test (and its associated confidence interval) which attains the nominal significance level (probability coverage) for any distribution in the contamination neighborhood of a continuous distribution. We also define some measures of robustness and efficiency under contamination for confidence intervals and tests. These measures are computed for the proposed procedures. © Institute of Mathematical Statistics, 2004. application/pdf http://hdl.handle.net/20.500.12110/paper_00905364_v32_n5_p1841_Yohai info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Ann. Stat. 2004;32(5):1841-1857 Confidence interval Nonparametric Robust Two-sided test Robust nonparametric inference for the median info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00905364_v32_n5_p1841_Yohai_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Confidence interval Nonparametric Robust Two-sided test |
spellingShingle |
Confidence interval Nonparametric Robust Two-sided test Yohai, V.J. Zamar, R.H. Robust nonparametric inference for the median |
topic_facet |
Confidence interval Nonparametric Robust Two-sided test |
description |
We consider the problem of constructing robust nonparametric confidence intervals and tests of hypothesis for the median when the data distribution is unknown and the data may contain a small fraction of contamination. We propose a modification of the sign test (and its associated confidence interval) which attains the nominal significance level (probability coverage) for any distribution in the contamination neighborhood of a continuous distribution. We also define some measures of robustness and efficiency under contamination for confidence intervals and tests. These measures are computed for the proposed procedures. © Institute of Mathematical Statistics, 2004. |
format |
Artículo Artículo publishedVersion |
author |
Yohai, V.J. Zamar, R.H. |
author_facet |
Yohai, V.J. Zamar, R.H. |
author_sort |
Yohai, V.J. |
title |
Robust nonparametric inference for the median |
title_short |
Robust nonparametric inference for the median |
title_full |
Robust nonparametric inference for the median |
title_fullStr |
Robust nonparametric inference for the median |
title_full_unstemmed |
Robust nonparametric inference for the median |
title_sort |
robust nonparametric inference for the median |
publishDate |
2004 |
url |
http://hdl.handle.net/20.500.12110/paper_00905364_v32_n5_p1841_Yohai https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00905364_v32_n5_p1841_Yohai_oai |
work_keys_str_mv |
AT yohaivj robustnonparametricinferenceforthemedian AT zamarrh robustnonparametricinferenceforthemedian |
_version_ |
1809356802128609280 |