Small Furstenberg sets

For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Haus...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Molter, U., Rela, E.
Formato: Artículo publishedVersion
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v400_n2_p475_Molter_oai
Aporte de:
id I28-R145-paper_0022247X_v400_n2_p475_Molter_oai
record_format dspace
spelling I28-R145-paper_0022247X_v400_n2_p475_Molter_oai2024-08-16 Molter, U. Rela, E. 2013 For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff measures to give estimates on the size of these sets. Our main result is to obtain a sharp dimension estimate for a whole class of zero-dimensional Furstenberg type sets. Namely, for hγ(x)=log-γ(1x), γ>0, we construct a set Eγ∈Fhγ of Hausdorff dimension not greater than 12. Since in a previous work we showed that 12 is a lower bound for the Hausdorff dimension of any E∈Fhγ, with the present construction, the value 12 is sharp for the whole class of Furstenberg sets associated to the zero dimensional functionshγ. © 2012 Elsevier Ltd. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rela, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2013;400(2):475-486 Dimension function Furstenberg sets Hausdorff dimension Jarník's theorems Small Furstenberg sets info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v400_n2_p475_Molter_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Dimension function
Furstenberg sets
Hausdorff dimension
Jarník's theorems
spellingShingle Dimension function
Furstenberg sets
Hausdorff dimension
Jarník's theorems
Molter, U.
Rela, E.
Small Furstenberg sets
topic_facet Dimension function
Furstenberg sets
Hausdorff dimension
Jarník's theorems
description For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff measures to give estimates on the size of these sets. Our main result is to obtain a sharp dimension estimate for a whole class of zero-dimensional Furstenberg type sets. Namely, for hγ(x)=log-γ(1x), γ>0, we construct a set Eγ∈Fhγ of Hausdorff dimension not greater than 12. Since in a previous work we showed that 12 is a lower bound for the Hausdorff dimension of any E∈Fhγ, with the present construction, the value 12 is sharp for the whole class of Furstenberg sets associated to the zero dimensional functionshγ. © 2012 Elsevier Ltd.
format Artículo
Artículo
publishedVersion
author Molter, U.
Rela, E.
author_facet Molter, U.
Rela, E.
author_sort Molter, U.
title Small Furstenberg sets
title_short Small Furstenberg sets
title_full Small Furstenberg sets
title_fullStr Small Furstenberg sets
title_full_unstemmed Small Furstenberg sets
title_sort small furstenberg sets
publishDate 2013
url http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v400_n2_p475_Molter_oai
work_keys_str_mv AT molteru smallfurstenbergsets
AT relae smallfurstenbergsets
_version_ 1809356790492561408