Oscillating solutions of a nonlinear fourth order ordinary differential equation

We study the existence of periodic solutions for a nonlinear fourth order ordinary differential equation. Under suitable conditions we prove the existence of at least one solution of the problem applying coincidence degree theory and the method of upper and lower solutions. © 2006 Elsevier Inc. All...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amster, P., Mariani, M.C.
Formato: Artículo publishedVersion
Publicado: 2007
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v325_n2_p1133_Amster
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v325_n2_p1133_Amster_oai
Aporte de:
id I28-R145-paper_0022247X_v325_n2_p1133_Amster_oai
record_format dspace
spelling I28-R145-paper_0022247X_v325_n2_p1133_Amster_oai2024-08-16 Amster, P. Mariani, M.C. 2007 We study the existence of periodic solutions for a nonlinear fourth order ordinary differential equation. Under suitable conditions we prove the existence of at least one solution of the problem applying coincidence degree theory and the method of upper and lower solutions. © 2006 Elsevier Inc. All rights reserved. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v325_n2_p1133_Amster info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2007;325(2):1133-1141 Multi-ion electrodiffusion theory Nonlinear ordinary differential equation Semiconductors modelling Oscillating solutions of a nonlinear fourth order ordinary differential equation info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v325_n2_p1133_Amster_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Multi-ion electrodiffusion theory
Nonlinear ordinary differential equation
Semiconductors modelling
spellingShingle Multi-ion electrodiffusion theory
Nonlinear ordinary differential equation
Semiconductors modelling
Amster, P.
Mariani, M.C.
Oscillating solutions of a nonlinear fourth order ordinary differential equation
topic_facet Multi-ion electrodiffusion theory
Nonlinear ordinary differential equation
Semiconductors modelling
description We study the existence of periodic solutions for a nonlinear fourth order ordinary differential equation. Under suitable conditions we prove the existence of at least one solution of the problem applying coincidence degree theory and the method of upper and lower solutions. © 2006 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Amster, P.
Mariani, M.C.
author_facet Amster, P.
Mariani, M.C.
author_sort Amster, P.
title Oscillating solutions of a nonlinear fourth order ordinary differential equation
title_short Oscillating solutions of a nonlinear fourth order ordinary differential equation
title_full Oscillating solutions of a nonlinear fourth order ordinary differential equation
title_fullStr Oscillating solutions of a nonlinear fourth order ordinary differential equation
title_full_unstemmed Oscillating solutions of a nonlinear fourth order ordinary differential equation
title_sort oscillating solutions of a nonlinear fourth order ordinary differential equation
publishDate 2007
url http://hdl.handle.net/20.500.12110/paper_0022247X_v325_n2_p1133_Amster
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v325_n2_p1133_Amster_oai
work_keys_str_mv AT amsterp oscillatingsolutionsofanonlinearfourthorderordinarydifferentialequation
AT marianimc oscillatingsolutionsofanonlinearfourthorderordinarydifferentialequation
_version_ 1809356789256290304