Universal deformation formulas and braided module algebras

We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guccione, J.A., Guccione, J.J., Valqui, C.
Formato: Artículo publishedVersion
Publicado: 2011
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v330_n1_p263_Guccione_oai
Aporte de:
id I28-R145-paper_00218693_v330_n1_p263_Guccione_oai
record_format dspace
spelling I28-R145-paper_00218693_v330_n1_p263_Guccione_oai2024-08-16 Guccione, J.A. Guccione, J.J. Valqui, C. 2011 We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Algebra 2011;330(1):263-297 Crossed product Deformation Hochschild cohomology Primary Secondary Universal deformation formulas and braided module algebras info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v330_n1_p263_Guccione_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
spellingShingle Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
Guccione, J.A.
Guccione, J.J.
Valqui, C.
Universal deformation formulas and braided module algebras
topic_facet Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
description We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc.
format Artículo
Artículo
publishedVersion
author Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_facet Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_sort Guccione, J.A.
title Universal deformation formulas and braided module algebras
title_short Universal deformation formulas and braided module algebras
title_full Universal deformation formulas and braided module algebras
title_fullStr Universal deformation formulas and braided module algebras
title_full_unstemmed Universal deformation formulas and braided module algebras
title_sort universal deformation formulas and braided module algebras
publishDate 2011
url http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v330_n1_p263_Guccione_oai
work_keys_str_mv AT guccioneja universaldeformationformulasandbraidedmodulealgebras
AT guccionejj universaldeformationformulasandbraidedmodulealgebras
AT valquic universaldeformationformulasandbraidedmodulealgebras
_version_ 1809357195181031424