Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions

In this article we prove derived invariance of Hochschild-Mitchell homology and cohomology and we extend to k-linear categories a result by Barot and Lenzing concerning derived equivalences and one-point extensions. We also prove the existence of a long exact sequence à la Happel and we give a gener...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Herscovich, E., Solotar, A.
Formato: Artículo publishedVersion
Publicado: 2007
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v315_n2_p852_Herscovich
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v315_n2_p852_Herscovich_oai
Aporte de:
id I28-R145-paper_00218693_v315_n2_p852_Herscovich_oai
record_format dspace
spelling I28-R145-paper_00218693_v315_n2_p852_Herscovich_oai2024-08-16 Herscovich, E. Solotar, A. 2007 In this article we prove derived invariance of Hochschild-Mitchell homology and cohomology and we extend to k-linear categories a result by Barot and Lenzing concerning derived equivalences and one-point extensions. We also prove the existence of a long exact sequence à la Happel and we give a generalization of this result which provides an alternative approach. © 2007 Elsevier Inc. All rights reserved. Fil:Solotar, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00218693_v315_n2_p852_Herscovich info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Algebra 2007;315(2):852-873 Derived equivalence Hochschild-Mitchell cohomology k-Category One-point extension Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v315_n2_p852_Herscovich_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Derived equivalence
Hochschild-Mitchell cohomology
k-Category
One-point extension
spellingShingle Derived equivalence
Hochschild-Mitchell cohomology
k-Category
One-point extension
Herscovich, E.
Solotar, A.
Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions
topic_facet Derived equivalence
Hochschild-Mitchell cohomology
k-Category
One-point extension
description In this article we prove derived invariance of Hochschild-Mitchell homology and cohomology and we extend to k-linear categories a result by Barot and Lenzing concerning derived equivalences and one-point extensions. We also prove the existence of a long exact sequence à la Happel and we give a generalization of this result which provides an alternative approach. © 2007 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Herscovich, E.
Solotar, A.
author_facet Herscovich, E.
Solotar, A.
author_sort Herscovich, E.
title Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions
title_short Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions
title_full Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions
title_fullStr Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions
title_full_unstemmed Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions
title_sort derived invariance of hochschild-mitchell (co)homology and one-point extensions
publishDate 2007
url http://hdl.handle.net/20.500.12110/paper_00218693_v315_n2_p852_Herscovich
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v315_n2_p852_Herscovich_oai
work_keys_str_mv AT herscoviche derivedinvarianceofhochschildmitchellcohomologyandonepointextensions
AT solotara derivedinvarianceofhochschildmitchellcohomologyandonepointextensions
_version_ 1809356867916267520