Multivariate subresultants in roots

We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: D'Andrea, C., Krick, T., Szanto, A.
Formato: Artículo publishedVersion
Publicado: 2006
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v302_n1_p16_DAndrea_oai
Aporte de:
id I28-R145-paper_00218693_v302_n1_p16_DAndrea_oai
record_format dspace
spelling I28-R145-paper_00218693_v302_n1_p16_DAndrea_oai2024-08-16 D'Andrea, C. Krick, T. Szanto, A. 2006 We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Algebra 2006;302(1):16-36 Poisson product formula Subresultants Vandermonde determinants Multivariate subresultants in roots info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v302_n1_p16_DAndrea_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Poisson product formula
Subresultants
Vandermonde determinants
spellingShingle Poisson product formula
Subresultants
Vandermonde determinants
D'Andrea, C.
Krick, T.
Szanto, A.
Multivariate subresultants in roots
topic_facet Poisson product formula
Subresultants
Vandermonde determinants
description We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author D'Andrea, C.
Krick, T.
Szanto, A.
author_facet D'Andrea, C.
Krick, T.
Szanto, A.
author_sort D'Andrea, C.
title Multivariate subresultants in roots
title_short Multivariate subresultants in roots
title_full Multivariate subresultants in roots
title_fullStr Multivariate subresultants in roots
title_full_unstemmed Multivariate subresultants in roots
title_sort multivariate subresultants in roots
publishDate 2006
url http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v302_n1_p16_DAndrea_oai
work_keys_str_mv AT dandreac multivariatesubresultantsinroots
AT krickt multivariatesubresultantsinroots
AT szantoa multivariatesubresultantsinroots
_version_ 1809356963088171008