On the Laplace transforms of retarded, Lorentz-invariant functions
Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply t...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
1979
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v31_n1_p51_Dominguez_oai |
Aporte de: |
id |
I28-R145-paper_00018708_v31_n1_p51_Dominguez_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00018708_v31_n1_p51_Dominguez_oai2024-08-16 Domínguez, A.G. Trione, S.E. 1979 Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms ("Théorie des distributions," p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula. © 1979. Fil:Trione, S.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 1979;31(1):51-62 On the Laplace transforms of retarded, Lorentz-invariant functions info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v31_n1_p51_Dominguez_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
description |
Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms ("Théorie des distributions," p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula. © 1979. |
format |
Artículo Artículo publishedVersion |
author |
Domínguez, A.G. Trione, S.E. |
spellingShingle |
Domínguez, A.G. Trione, S.E. On the Laplace transforms of retarded, Lorentz-invariant functions |
author_facet |
Domínguez, A.G. Trione, S.E. |
author_sort |
Domínguez, A.G. |
title |
On the Laplace transforms of retarded, Lorentz-invariant functions |
title_short |
On the Laplace transforms of retarded, Lorentz-invariant functions |
title_full |
On the Laplace transforms of retarded, Lorentz-invariant functions |
title_fullStr |
On the Laplace transforms of retarded, Lorentz-invariant functions |
title_full_unstemmed |
On the Laplace transforms of retarded, Lorentz-invariant functions |
title_sort |
on the laplace transforms of retarded, lorentz-invariant functions |
publishDate |
1979 |
url |
http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v31_n1_p51_Dominguez_oai |
work_keys_str_mv |
AT dominguezag onthelaplacetransformsofretardedlorentzinvariantfunctions AT trionese onthelaplacetransformsofretardedlorentzinvariantfunctions |
_version_ |
1809356941906935808 |