On the Laplace transforms of retarded, Lorentz-invariant functions

Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Domínguez, A.G., Trione, S.E.
Formato: Artículo publishedVersion
Publicado: 1979
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v31_n1_p51_Dominguez_oai
Aporte de:
id I28-R145-paper_00018708_v31_n1_p51_Dominguez_oai
record_format dspace
spelling I28-R145-paper_00018708_v31_n1_p51_Dominguez_oai2024-08-16 Domínguez, A.G. Trione, S.E. 1979 Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms ("Théorie des distributions," p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula. © 1979. Fil:Trione, S.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 1979;31(1):51-62 On the Laplace transforms of retarded, Lorentz-invariant functions info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v31_n1_p51_Dominguez_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
description Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms ("Théorie des distributions," p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula. © 1979.
format Artículo
Artículo
publishedVersion
author Domínguez, A.G.
Trione, S.E.
spellingShingle Domínguez, A.G.
Trione, S.E.
On the Laplace transforms of retarded, Lorentz-invariant functions
author_facet Domínguez, A.G.
Trione, S.E.
author_sort Domínguez, A.G.
title On the Laplace transforms of retarded, Lorentz-invariant functions
title_short On the Laplace transforms of retarded, Lorentz-invariant functions
title_full On the Laplace transforms of retarded, Lorentz-invariant functions
title_fullStr On the Laplace transforms of retarded, Lorentz-invariant functions
title_full_unstemmed On the Laplace transforms of retarded, Lorentz-invariant functions
title_sort on the laplace transforms of retarded, lorentz-invariant functions
publishDate 1979
url http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v31_n1_p51_Dominguez_oai
work_keys_str_mv AT dominguezag onthelaplacetransformsofretardedlorentzinvariantfunctions
AT trionese onthelaplacetransformsofretardedlorentzinvariantfunctions
_version_ 1809356941906935808