Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzezińs...
Guardado en:
Autores principales: | Carboni, G., Guccione, J.A., Guccione, J.J., Valqui, C. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v231_n6_p3502_Carboni_oai |
Aporte de: |
Ejemplares similares
-
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
por: Carboni, G., et al.
Publicado: (2012) -
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
por: Carboni, G., et al. -
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
por: Carboni, Graciela, et al.
Publicado: (2012) -
Cyclic homology of Hopf crossed products
por: Carboni, G., et al.
Publicado: (2010) -
Cyclic homology of Hopf crossed products
por: Carboni, G., et al.