Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products

Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzezińs...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carboni, G., Guccione, J.A., Guccione, J.J., Valqui, C.
Formato: Artículo publishedVersion
Publicado: 2012
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v231_n6_p3502_Carboni_oai
Aporte de:
id I28-R145-paper_00018708_v231_n6_p3502_Carboni_oai
record_format dspace
spelling I28-R145-paper_00018708_v231_n6_p3502_Carboni_oai2024-08-16 Carboni, G. Guccione, J.A. Guccione, J.J. Valqui, C. 2012 Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzeziński. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E. © 2012 Elsevier Ltd. Fil:Carboni, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 2012;231(6):3502-3568 Crossed products Cyclic homology Hochschild (co)homology Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v231_n6_p3502_Carboni_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Crossed products
Cyclic homology
Hochschild (co)homology
spellingShingle Crossed products
Cyclic homology
Hochschild (co)homology
Carboni, G.
Guccione, J.A.
Guccione, J.J.
Valqui, C.
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
topic_facet Crossed products
Cyclic homology
Hochschild (co)homology
description Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzeziński. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E. © 2012 Elsevier Ltd.
format Artículo
Artículo
publishedVersion
author Carboni, G.
Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_facet Carboni, G.
Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_sort Carboni, G.
title Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
title_short Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
title_full Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
title_fullStr Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
title_full_unstemmed Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
title_sort cyclic homology of brzeziński's crossed products and of braided hopf crossed products
publishDate 2012
url http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v231_n6_p3502_Carboni_oai
work_keys_str_mv AT carbonig cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts
AT guccioneja cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts
AT guccionejj cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts
AT valquic cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts
_version_ 1809356849262100480