Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzezińs...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v231_n6_p3502_Carboni_oai |
Aporte de: |
id |
I28-R145-paper_00018708_v231_n6_p3502_Carboni_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00018708_v231_n6_p3502_Carboni_oai2024-08-16 Carboni, G. Guccione, J.A. Guccione, J.J. Valqui, C. 2012 Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzeziński. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E. © 2012 Elsevier Ltd. Fil:Carboni, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 2012;231(6):3502-3568 Crossed products Cyclic homology Hochschild (co)homology Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v231_n6_p3502_Carboni_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Crossed products Cyclic homology Hochschild (co)homology |
spellingShingle |
Crossed products Cyclic homology Hochschild (co)homology Carboni, G. Guccione, J.A. Guccione, J.J. Valqui, C. Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
topic_facet |
Crossed products Cyclic homology Hochschild (co)homology |
description |
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzeziński. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E. © 2012 Elsevier Ltd. |
format |
Artículo Artículo publishedVersion |
author |
Carboni, G. Guccione, J.A. Guccione, J.J. Valqui, C. |
author_facet |
Carboni, G. Guccione, J.A. Guccione, J.J. Valqui, C. |
author_sort |
Carboni, G. |
title |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_short |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_full |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_fullStr |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_full_unstemmed |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_sort |
cyclic homology of brzeziński's crossed products and of braided hopf crossed products |
publishDate |
2012 |
url |
http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v231_n6_p3502_Carboni_oai |
work_keys_str_mv |
AT carbonig cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts AT guccioneja cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts AT guccionejj cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts AT valquic cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts |
_version_ |
1809356849262100480 |