Envelopes of holomorphy and extension of functions of bounded type

We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in ter...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carando, D., Muro, S.
Formato: Artículo publishedVersion
Publicado: 2012
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00018708_v229_n3_p2098_Carando
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v229_n3_p2098_Carando_oai
Aporte de:
id I28-R145-paper_00018708_v229_n3_p2098_Carando_oai
record_format dspace
spelling I28-R145-paper_00018708_v229_n3_p2098_Carando_oai2024-08-16 Carando, D. Muro, S. 2012 We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p. © 2011 Elsevier Inc. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v229_n3_p2098_Carando info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 2012;229(3):2098-2121 Envelope of holomorphy Holomorphic functions of bounded type Riemann domains Envelopes of holomorphy and extension of functions of bounded type info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v229_n3_p2098_Carando_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Envelope of holomorphy
Holomorphic functions of bounded type
Riemann domains
spellingShingle Envelope of holomorphy
Holomorphic functions of bounded type
Riemann domains
Carando, D.
Muro, S.
Envelopes of holomorphy and extension of functions of bounded type
topic_facet Envelope of holomorphy
Holomorphic functions of bounded type
Riemann domains
description We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p. © 2011 Elsevier Inc.
format Artículo
Artículo
publishedVersion
author Carando, D.
Muro, S.
author_facet Carando, D.
Muro, S.
author_sort Carando, D.
title Envelopes of holomorphy and extension of functions of bounded type
title_short Envelopes of holomorphy and extension of functions of bounded type
title_full Envelopes of holomorphy and extension of functions of bounded type
title_fullStr Envelopes of holomorphy and extension of functions of bounded type
title_full_unstemmed Envelopes of holomorphy and extension of functions of bounded type
title_sort envelopes of holomorphy and extension of functions of bounded type
publishDate 2012
url http://hdl.handle.net/20.500.12110/paper_00018708_v229_n3_p2098_Carando
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v229_n3_p2098_Carando_oai
work_keys_str_mv AT carandod envelopesofholomorphyandextensionoffunctionsofboundedtype
AT muros envelopesofholomorphyandextensionoffunctionsofboundedtype
_version_ 1809357037759365120