Classifying smooth lattice polytopes via toric fibrations

We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.

Guardado en:
Detalles Bibliográficos
Autores principales: Dickenstein, A., Di Rocco, S., Piene, R.
Formato: Artículo publishedVersion
Publicado: 2009
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v222_n1_p240_Dickenstein_oai
Aporte de:
Descripción
Sumario:We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.