Classifying smooth lattice polytopes via toric fibrations

We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.

Guardado en:
Detalles Bibliográficos
Autores principales: Dickenstein, A., Di Rocco, S., Piene, R.
Formato: Artículo publishedVersion
Publicado: 2009
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v222_n1_p240_Dickenstein_oai
Aporte de:
id I28-R145-paper_00018708_v222_n1_p240_Dickenstein_oai
record_format dspace
spelling I28-R145-paper_00018708_v222_n1_p240_Dickenstein_oai2024-08-16 Dickenstein, A. Di Rocco, S. Piene, R. 2009 We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 2009;222(1):240-254 Cayley polytope Lattice polytope Nef value Toric fibration Toric variety Classifying smooth lattice polytopes via toric fibrations info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v222_n1_p240_Dickenstein_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Cayley polytope
Lattice polytope
Nef value
Toric fibration
Toric variety
spellingShingle Cayley polytope
Lattice polytope
Nef value
Toric fibration
Toric variety
Dickenstein, A.
Di Rocco, S.
Piene, R.
Classifying smooth lattice polytopes via toric fibrations
topic_facet Cayley polytope
Lattice polytope
Nef value
Toric fibration
Toric variety
description We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Dickenstein, A.
Di Rocco, S.
Piene, R.
author_facet Dickenstein, A.
Di Rocco, S.
Piene, R.
author_sort Dickenstein, A.
title Classifying smooth lattice polytopes via toric fibrations
title_short Classifying smooth lattice polytopes via toric fibrations
title_full Classifying smooth lattice polytopes via toric fibrations
title_fullStr Classifying smooth lattice polytopes via toric fibrations
title_full_unstemmed Classifying smooth lattice polytopes via toric fibrations
title_sort classifying smooth lattice polytopes via toric fibrations
publishDate 2009
url http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v222_n1_p240_Dickenstein_oai
work_keys_str_mv AT dickensteina classifyingsmoothlatticepolytopesviatoricfibrations
AT diroccos classifyingsmoothlatticepolytopesviatoricfibrations
AT piener classifyingsmoothlatticepolytopesviatoricfibrations
_version_ 1809356757910159360