Solutions of the divergence operator on John domains

If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not val...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Acosta, G., Durán, R.G., Muschietti, M.A.
Formato: Artículo publishedVersion
Publicado: 2006
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00018708_v206_n2_p373_Acosta
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v206_n2_p373_Acosta_oai
Aporte de:
id I28-R145-paper_00018708_v206_n2_p373_Acosta_oai
record_format dspace
spelling I28-R145-paper_00018708_v206_n2_p373_Acosta_oai2024-08-16 Acosta, G. Durán, R.G. Muschietti, M.A. 2006 If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property. © 2005 Elsevier Inc. All rights reserved. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v206_n2_p373_Acosta info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 2006;206(2):373-401 Divergence operator John domains Singular integrals Solutions of the divergence operator on John domains info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v206_n2_p373_Acosta_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Divergence operator
John domains
Singular integrals
spellingShingle Divergence operator
John domains
Singular integrals
Acosta, G.
Durán, R.G.
Muschietti, M.A.
Solutions of the divergence operator on John domains
topic_facet Divergence operator
John domains
Singular integrals
description If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property. © 2005 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Acosta, G.
Durán, R.G.
Muschietti, M.A.
author_facet Acosta, G.
Durán, R.G.
Muschietti, M.A.
author_sort Acosta, G.
title Solutions of the divergence operator on John domains
title_short Solutions of the divergence operator on John domains
title_full Solutions of the divergence operator on John domains
title_fullStr Solutions of the divergence operator on John domains
title_full_unstemmed Solutions of the divergence operator on John domains
title_sort solutions of the divergence operator on john domains
publishDate 2006
url http://hdl.handle.net/20.500.12110/paper_00018708_v206_n2_p373_Acosta
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v206_n2_p373_Acosta_oai
work_keys_str_mv AT acostag solutionsofthedivergenceoperatoronjohndomains
AT duranrg solutionsofthedivergenceoperatoronjohndomains
AT muschiettima solutionsofthedivergenceoperatoronjohndomains
_version_ 1809356757660598272