Tuning a hybrid SA based algorithm applied to Optimal Sensor Network Design

Sensor network design problem (SNDP) in process plants includes the determination of which process variables should be measured to achieve a required degree of knowledge about the plant. We propose to solve the SNDP problem in plants of increasing size and complexity using a hybrid algorithm based o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hernández, José Luis, Salto, Carolina, Minetti, Gabriela F., Carnero, Mercedes, Bermúdez, Carlos, Sánchez, Mabel
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/97201
Aporte de:
Descripción
Sumario:Sensor network design problem (SNDP) in process plants includes the determination of which process variables should be measured to achieve a required degree of knowledge about the plant. We propose to solve the SNDP problem in plants of increasing size and complexity using a hybrid algorithm based on Simulated Annealing (HSA) as main metaheuristic and Tabu Search embedded with Strategic Oscillation (SOTS) as a subordinate metaheuristic. We studied the tuning of control parameters in order to improve the HSA performance. Experimental results indicate that a high-quality solution in reasonable computational times can be found by HSA effectively. Moreover, HSA shows good features solving SNDP compared with proposals from the literature.