Dilogarithm ladders from Wilson loops

We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this expli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bianchi, Marco S., Leoni Olivera, Matías
Formato: Articulo
Lenguaje:Inglés
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/86014
Aporte de:
Descripción
Sumario:We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.