Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques
Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable...
Guardado en:
Autores principales: | Varela, Sebastián, Dhodda, Pruthvidhar Reddy, Hsu, William H., Vara Prasad, P. V., Assefa, Yared, Peralta, Nahuel R., Griffin, Terry, Sharda, Ajay, Ferguson, Allison, Ciampitti, Ignacio A. |
---|---|
Formato: | Objeto de conferencia Resumen |
Lenguaje: | Inglés |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/70990 http://47jaiio.sadio.org.ar/sites/default/files/CAI-9.pdf |
Aporte de: |
Ejemplares similares
-
Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
por: Bussi, Ulises, et al.
Publicado: (2023) -
Unmanned Aircraft Systems
por: Bazán, Leonardo Arcadio
Publicado: (2013) -
Design of a flight controller to achieve improved fault tolerance
por: Pose, Claudio, et al.
Publicado: (2022) -
UAV-based field phenotyping based on low-cost, open-source hardware and software
por: Pereyra Irujo, Gustavo, et al.
Publicado: (2016) -
Spatio-temporal evaluation of plant height in corn via unmanned aerial systems
por: Varela, Sebastián, et al.
Publicado: (2018)