Learning Kernels from genetic profiles to discriminate tumor subtypes
Our work aims to perform the feature selection step on Multiple Kernel Learning by optimizing the Kernel Target Alignment score. It begins by building feature-wise gaussian kernel functions. Then by a constrained linear combination of the feature-wise kernels, we aim to increase the Kernel Target Al...
Guardado en:
| Autores principales: | Palazzo, Martín, Beauseroy, Pierre, Koile, Daniel, Yankilevich, Patricio |
|---|---|
| Formato: | Objeto de conferencia Resumen |
| Lenguaje: | Inglés |
| Publicado: |
2018
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/70649 http://47jaiio.sadio.org.ar/sites/default/files/AGRANDA-09.pdf |
| Aporte de: |
Ejemplares similares
-
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models
por: Palazzo, Martin, et al.
Publicado: (2019) - Kernel number and kernel weight determination in dent and popcorn maize
- Kernel number and kernel weight determination in dent and popcorn maize
- Kernel weight in maize genetic control of its physiological and compositional determinants in a dent × flint - caribbean RIL population
- Kernel weight in maize genetic control of its physiological and compositional determinants in a dent × flint - caribbean RIL population