Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task

Since 2013, the connectionist paradigm in Natural Language Processing (NLP) has resurged in academic circles by means of new architectures to be adopted later by the software industry with the use of great computing power. It is a truly algorithmic revolution, known as Deep Learning. Several models...

Descripción completa

Detalles Bibliográficos
Autores principales: Balbachan, Fernando, Flechas, Natalia, Maltagliatti, Ignacio, Pensa, Francisco, Ramírez, Lucas
Formato: Artículo revista
Lenguaje:Español
Publicado: Anales de Lingüística 2021
Materias:
Acceso en línea:https://revistas.uncu.edu.ar/ojs3/index.php/analeslinguistica/article/view/5524
Aporte de:
id I11-R94article-5524
record_format ojs
institution Universidad Nacional de Cuyo
institution_str I-11
repository_str R-94
container_title_str Anales de Lingüística
language Español
format Artículo revista
topic aprendizaje profundo
ELMo
BERT
GPT-2
comprensión del lenguaje natural
generación de texto
Deep Learning
ELMo
BERT
BERT-2
Natural Language Understanding (NLU)
Natural Language Generation (NLG)
spellingShingle aprendizaje profundo
ELMo
BERT
GPT-2
comprensión del lenguaje natural
generación de texto
Deep Learning
ELMo
BERT
BERT-2
Natural Language Understanding (NLU)
Natural Language Generation (NLG)
Balbachan, Fernando
Flechas, Natalia
Maltagliatti, Ignacio
Pensa, Francisco
Ramírez, Lucas
Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task
topic_facet aprendizaje profundo
ELMo
BERT
GPT-2
comprensión del lenguaje natural
generación de texto
Deep Learning
ELMo
BERT
BERT-2
Natural Language Understanding (NLU)
Natural Language Generation (NLG)
author Balbachan, Fernando
Flechas, Natalia
Maltagliatti, Ignacio
Pensa, Francisco
Ramírez, Lucas
author_facet Balbachan, Fernando
Flechas, Natalia
Maltagliatti, Ignacio
Pensa, Francisco
Ramírez, Lucas
author_sort Balbachan, Fernando
title Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task
title_short Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task
title_full Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task
title_fullStr Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task
title_full_unstemmed Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task
title_sort deep learning-based natural language understanding models and a prototype gpt-2 deployment fine-tuned for a specific natural language generation task
description Since 2013, the connectionist paradigm in Natural Language Processing (NLP) has resurged in academic circles by means of new architectures to be adopted later by the software industry with the use of great computing power. It is a truly algorithmic revolution, known as Deep Learning. Several models have been offered in a speedy race in order to improve state-of-the-art metrics for general domain NLP tasks, according to the most frequentlly used standards (BLEU, GLUE, SuperGLUE). From 2018 onwards, Deep Learning models have attracted even more attention through the so-called Transformers revolution (ELMo, BERT y GPT-2). In this paper, we propose a brief yet exhaustive survey on the models that have been evolving during this last decade. We also describe in detail a complete from scratch implementation for the most recent open-source model GPT-2, fine-tuned for a specific NLG task of slogan generation for commercial products.
publisher Anales de Lingüística
publishDate 2021
url https://revistas.uncu.edu.ar/ojs3/index.php/analeslinguistica/article/view/5524
work_keys_str_mv AT balbachanfernando deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask
AT flechasnatalia deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask
AT maltagliattiignacio deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask
AT pensafrancisco deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask
AT ramirezlucas deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask
AT balbachanfernando modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural
AT flechasnatalia modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural
AT maltagliattiignacio modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural
AT pensafrancisco modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural
AT ramirezlucas modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural
first_indexed 2022-06-20T13:33:49Z
last_indexed 2022-06-20T13:33:49Z
bdutipo_str Revistas
_version_ 1764819785999187969