Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task
Since 2013, the connectionist paradigm in Natural Language Processing (NLP) has resurged in academic circles by means of new architectures to be adopted later by the software industry with the use of great computing power. It is a truly algorithmic revolution, known as Deep Learning. Several models...
Autores principales: | , , , , |
---|---|
Formato: | Artículo revista |
Lenguaje: | Español |
Publicado: |
Anales de Lingüística
2021
|
Materias: | |
Acceso en línea: | https://revistas.uncu.edu.ar/ojs3/index.php/analeslinguistica/article/view/5524 |
Aporte de: |
id |
I11-R94article-5524 |
---|---|
record_format |
ojs |
institution |
Universidad Nacional de Cuyo |
institution_str |
I-11 |
repository_str |
R-94 |
container_title_str |
Anales de Lingüística |
language |
Español |
format |
Artículo revista |
topic |
aprendizaje profundo ELMo BERT GPT-2 comprensión del lenguaje natural generación de texto Deep Learning ELMo BERT BERT-2 Natural Language Understanding (NLU) Natural Language Generation (NLG) |
spellingShingle |
aprendizaje profundo ELMo BERT GPT-2 comprensión del lenguaje natural generación de texto Deep Learning ELMo BERT BERT-2 Natural Language Understanding (NLU) Natural Language Generation (NLG) Balbachan, Fernando Flechas, Natalia Maltagliatti, Ignacio Pensa, Francisco Ramírez, Lucas Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task |
topic_facet |
aprendizaje profundo ELMo BERT GPT-2 comprensión del lenguaje natural generación de texto Deep Learning ELMo BERT BERT-2 Natural Language Understanding (NLU) Natural Language Generation (NLG) |
author |
Balbachan, Fernando Flechas, Natalia Maltagliatti, Ignacio Pensa, Francisco Ramírez, Lucas |
author_facet |
Balbachan, Fernando Flechas, Natalia Maltagliatti, Ignacio Pensa, Francisco Ramírez, Lucas |
author_sort |
Balbachan, Fernando |
title |
Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task |
title_short |
Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task |
title_full |
Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task |
title_fullStr |
Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task |
title_full_unstemmed |
Deep Learning-based Natural Language Understanding Models and a Prototype GPT-2 Deployment Fine-Tuned for a Specific Natural Language Generation Task |
title_sort |
deep learning-based natural language understanding models and a prototype gpt-2 deployment fine-tuned for a specific natural language generation task |
description |
Since 2013, the connectionist paradigm in Natural Language Processing (NLP) has resurged in academic circles by means of new architectures to be adopted later by the software industry with the use of great computing power. It is a truly algorithmic revolution, known as Deep Learning. Several models have been offered in a speedy race in order to improve state-of-the-art metrics for general domain NLP tasks, according to the most frequentlly used standards (BLEU, GLUE, SuperGLUE). From 2018 onwards, Deep Learning models have attracted even more attention through the so-called Transformers revolution (ELMo, BERT y GPT-2). In this paper, we propose a brief yet exhaustive survey on the models that have been evolving during this last decade. We also describe in detail a complete from scratch implementation for the most recent open-source model GPT-2, fine-tuned for a specific NLG task of slogan generation for commercial products. |
publisher |
Anales de Lingüística |
publishDate |
2021 |
url |
https://revistas.uncu.edu.ar/ojs3/index.php/analeslinguistica/article/view/5524 |
work_keys_str_mv |
AT balbachanfernando deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask AT flechasnatalia deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask AT maltagliattiignacio deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask AT pensafrancisco deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask AT ramirezlucas deeplearningbasednaturallanguageunderstandingmodelsandaprototypegpt2deploymentfinetunedforaspecificnaturallanguagegenerationtask AT balbachanfernando modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural AT flechasnatalia modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural AT maltagliattiignacio modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural AT pensafrancisco modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural AT ramirezlucas modelosdeaprendizajeprofundoparacomprensiondetextosyunaimplementacionprototipicadegpt2paraunatareaespecificadegeneraciondelenguajenatural |
first_indexed |
2022-06-20T13:33:49Z |
last_indexed |
2022-06-20T13:33:49Z |
bdutipo_str |
Revistas |
_version_ |
1764819785999187969 |