Tessellating the plane with convex polygons

In this article we give a panoramic view over the classification of tilings of the euclidean plane by using copies of a single convex polygon (convex monohedral tilings). First, we show that a tiling with regular poligons is only possible by using triangles, squares and regular hexagons, a fact well...

Descripción completa

Detalles Bibliográficos
Autor principal: Podestá, Ricardo A.
Formato: Artículo revista
Lenguaje:Español
Publicado: Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2022
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/REM/article/view/37469
Aporte de:
id I10-R366-article-37469
record_format ojs
spelling I10-R366-article-374692022-05-17T18:49:50Z Tessellating the plane with convex polygons Teselando el plano con polígonos convexos Podestá, Ricardo A. Embaldosados Polígonos convexos Polígonos regulares Tilings Plane convex polygons regular polygons In this article we give a panoramic view over the classification of tilings of the euclidean plane by using copies of a single convex polygon (convex monohedral tilings). First, we show that a tiling with regular poligons is only possible by using triangles, squares and regular hexagons, a fact well known by the ancient greeks, and that if the polygon is not convex then there are infinite possible tilings. In this way, we focus on convex tilings withnon-regular polygons. First, we show that any triangle or quadrilateral tiles the plane. Then, we show that a polygon that tiles the plane must have at most 6 edges. Next, we consider the case of hexagons and show that there are only 3 different families of convex hexagons tiling the plane. Finally, we deal with pentagons, whose classification is more involved, and could be completed recently in 2017. We will show that there are 15 different families of pentagons tiling the plane. En este articulo damos un panorama sobre la clasificación de los embaldosados del plano euclídeo por copias de un único polígono convexo (teselados monoedralesconvexos). Primero mostramos que el teselado con polígonos regulares sólo es posible con triángulos, cuadrados y hexágonos, hecho ya conocido por los antiguos griegos, y que si el polígono es no-convexo entonces hay infinitos teselados posibles. Así, nos enfocamos en teselados convexos con polígonos no-regulares. Primero mostramos que cualquier triangulo o cuadrilátero tesela el plano. Después mostramos que un polígono que tesela el plano debe tener 6 lados o menos. A continuación, nos ocupamos de los hexágonos y mostramos que solo hay 3 familias distintas de hexágonos convexos que teselan el plano. Finalmente consideramos el caso de los pentágonos que es mas delicado, cuya clasificación completa pudo terminarse muy recientemente en 2017. Mostramos que hay solo 15 familias distintas de pentágonos que teselan el plano Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2022-04-29 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares application/pdf https://revistas.unc.edu.ar/index.php/REM/article/view/37469 10.33044/revem.37469 Revista de Educación Matemática; Vol. 37 Núm. 1 (2022); 31-60 1852-2890 0326-8780 spa https://revistas.unc.edu.ar/index.php/REM/article/view/37469/37583 https://creativecommons.org/licenses/by-sa/4.0/
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-366
container_title_str Revista de Educación Matemática
language Español
format Artículo revista
topic Embaldosados
Polígonos convexos
Polígonos regulares
Tilings
Plane
convex polygons
regular polygons
spellingShingle Embaldosados
Polígonos convexos
Polígonos regulares
Tilings
Plane
convex polygons
regular polygons
Podestá, Ricardo A.
Tessellating the plane with convex polygons
topic_facet Embaldosados
Polígonos convexos
Polígonos regulares
Tilings
Plane
convex polygons
regular polygons
author Podestá, Ricardo A.
author_facet Podestá, Ricardo A.
author_sort Podestá, Ricardo A.
title Tessellating the plane with convex polygons
title_short Tessellating the plane with convex polygons
title_full Tessellating the plane with convex polygons
title_fullStr Tessellating the plane with convex polygons
title_full_unstemmed Tessellating the plane with convex polygons
title_sort tessellating the plane with convex polygons
description In this article we give a panoramic view over the classification of tilings of the euclidean plane by using copies of a single convex polygon (convex monohedral tilings). First, we show that a tiling with regular poligons is only possible by using triangles, squares and regular hexagons, a fact well known by the ancient greeks, and that if the polygon is not convex then there are infinite possible tilings. In this way, we focus on convex tilings withnon-regular polygons. First, we show that any triangle or quadrilateral tiles the plane. Then, we show that a polygon that tiles the plane must have at most 6 edges. Next, we consider the case of hexagons and show that there are only 3 different families of convex hexagons tiling the plane. Finally, we deal with pentagons, whose classification is more involved, and could be completed recently in 2017. We will show that there are 15 different families of pentagons tiling the plane.
publisher Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación
publishDate 2022
url https://revistas.unc.edu.ar/index.php/REM/article/view/37469
work_keys_str_mv AT podestaricardoa tessellatingtheplanewithconvexpolygons
AT podestaricardoa teselandoelplanoconpoligonosconvexos
first_indexed 2024-09-03T22:36:54Z
last_indexed 2024-09-03T22:36:54Z
_version_ 1809216191606030336