Statistical and connectionist models for predict the academic performance of universitary students

This paper analyzes the relationship between the academic performance of students entering professional profile's careers in the FACENA - UNNE in Corrientes, Argentina, during the first year, and their social-educational characteristics.Performance was measured by the approval of the partial ev...

Descripción completa

Detalles Bibliográficos
Autores principales: López, María V., Longoni, María G., Porcel, Eduardo A.
Formato: Artículo revista
Lenguaje:Español
Publicado: Escuela de Perfeccionamiento en Investigación Operativa 2018
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/epio/article/view/20348
Aporte de:
id I10-R359-article-20348
record_format ojs
spelling I10-R359-article-203482018-06-18T15:15:55Z Statistical and connectionist models for predict the academic performance of universitary students Modelos estadísticos y conexionistas para predecir el rendimiento académico de alumnos universitarios López, María V. Longoni, María G. Porcel, Eduardo A. academic performance university freshmen multinomial logistic regression neural networks multilayer perceptron radial basis function rendimiento académico ingresantes universitarios regresión logística multinomial redes neuronales perceptrón multicapa función de base radial This paper analyzes the relationship between the academic performance of students entering professional profile's careers in the FACENA - UNNE in Corrientes, Argentina, during the first year, and their social-educational characteristics.Performance was measured by the approval of the partial evaluation of the subjects in the first semester of the first year. A model of Multinomial Logistic Regression (MLR) and two models of neural networks of type Multilayer Perceptron (MP) and Radial Basis Function (RBF) were fitted to two data sets: a) students entering in Biochemistry, whose curriculum includes two subjects in the first semester of the first year, b) students entering careers whose curriculum includes three subjects in the first semester of the first year.In both cases, the PM model produced the best fit, and besides it was observed that in the case b) the three techniques showed high percentages of correct classification. The obtained results contribute to guide policies and strategies to improve the worrying levels of dropout and low performance of students in the first year of college. En este trabajo se analiza la relación del rendimiento académico de los alumnos ingresantes a las carreras de perfil profesional la FACENA – UNNE en Corrientes, Argentina, durante el primer año, con sus características socioeducativas. El rendimiento fue medido por la aprobación de los exámenes parciales de las asignaturas del primer cuatrimestre del primer año. Se ajustaron un modelo de Regresión Logística Multinomial (RLM) y dos modelos de redes neuronales de tipo Perceptrón Multicapa (PM) y de Función de Base Radial (FBR) a dos conjuntos de datos: a) alumnos ingresantes a Bioquímica, cuyos plan de estudios incluye dos asignaturas en el primer cuatrimestre del primer año; b) alumnos ingresantes a carreras cuyos planes de estudios incluyen tres asignaturas en el primer cuatrimestre del primer año.En ambos casos el modelo PM produjo el mejor ajuste, observándose que en el caso b) las tres técnicas utilizadas registraron altos porcentajes de clasificación correcta. Los resultados obtenidos contribuyen a orientar las políticas y estrategias institucionales para mejorar los preocupantes índices de desgranamiento, abandono y bajo rendimiento de los estudiantes en el primer año de universidad. Escuela de Perfeccionamiento en Investigación Operativa 2018-06-18 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unc.edu.ar/index.php/epio/article/view/20348 Revista de la Escuela de Perfeccionamiento en Investigación Operativa; Vol. 20 Núm. 33 (2012): Octubre; 135-157 1853-9777 0329-7322 spa https://revistas.unc.edu.ar/index.php/epio/article/view/20348/19979
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-359
container_title_str Revista de la Escuela de Perfeccionamiento en Investigación Operativa
language Español
format Artículo revista
topic academic performance
university freshmen
multinomial logistic regression
neural networks
multilayer perceptron
radial basis function
rendimiento académico
ingresantes universitarios
regresión logística multinomial
redes neuronales
perceptrón multicapa
función de base radial
spellingShingle academic performance
university freshmen
multinomial logistic regression
neural networks
multilayer perceptron
radial basis function
rendimiento académico
ingresantes universitarios
regresión logística multinomial
redes neuronales
perceptrón multicapa
función de base radial
López, María V.
Longoni, María G.
Porcel, Eduardo A.
Statistical and connectionist models for predict the academic performance of universitary students
topic_facet academic performance
university freshmen
multinomial logistic regression
neural networks
multilayer perceptron
radial basis function
rendimiento académico
ingresantes universitarios
regresión logística multinomial
redes neuronales
perceptrón multicapa
función de base radial
author López, María V.
Longoni, María G.
Porcel, Eduardo A.
author_facet López, María V.
Longoni, María G.
Porcel, Eduardo A.
author_sort López, María V.
title Statistical and connectionist models for predict the academic performance of universitary students
title_short Statistical and connectionist models for predict the academic performance of universitary students
title_full Statistical and connectionist models for predict the academic performance of universitary students
title_fullStr Statistical and connectionist models for predict the academic performance of universitary students
title_full_unstemmed Statistical and connectionist models for predict the academic performance of universitary students
title_sort statistical and connectionist models for predict the academic performance of universitary students
description This paper analyzes the relationship between the academic performance of students entering professional profile's careers in the FACENA - UNNE in Corrientes, Argentina, during the first year, and their social-educational characteristics.Performance was measured by the approval of the partial evaluation of the subjects in the first semester of the first year. A model of Multinomial Logistic Regression (MLR) and two models of neural networks of type Multilayer Perceptron (MP) and Radial Basis Function (RBF) were fitted to two data sets: a) students entering in Biochemistry, whose curriculum includes two subjects in the first semester of the first year, b) students entering careers whose curriculum includes three subjects in the first semester of the first year.In both cases, the PM model produced the best fit, and besides it was observed that in the case b) the three techniques showed high percentages of correct classification. The obtained results contribute to guide policies and strategies to improve the worrying levels of dropout and low performance of students in the first year of college.
publisher Escuela de Perfeccionamiento en Investigación Operativa
publishDate 2018
url https://revistas.unc.edu.ar/index.php/epio/article/view/20348
work_keys_str_mv AT lopezmariav statisticalandconnectionistmodelsforpredicttheacademicperformanceofuniversitarystudents
AT longonimariag statisticalandconnectionistmodelsforpredicttheacademicperformanceofuniversitarystudents
AT porceleduardoa statisticalandconnectionistmodelsforpredicttheacademicperformanceofuniversitarystudents
AT lopezmariav modelosestadisticosyconexionistasparapredecirelrendimientoacademicodealumnosuniversitarios
AT longonimariag modelosestadisticosyconexionistasparapredecirelrendimientoacademicodealumnosuniversitarios
AT porceleduardoa modelosestadisticosyconexionistasparapredecirelrendimientoacademicodealumnosuniversitarios
first_indexed 2024-09-03T22:23:18Z
last_indexed 2024-09-03T22:23:18Z
_version_ 1809215335264419840