Hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. Application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr
In this work the conceptual/theoretical framework of a novel HyperHeuristic, Case Based Reasoning and supported on some variants of MultiObjective Particle Swarm Optimization MetaHeuristic, called X-PSO, are presented.This HyperHeuristic, referred as HY X-FPSO CBR (Case Based Reasoning), works by me...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Español |
| Publicado: |
Escuela de Perfeccionamiento en Investigación Operativa
2018
|
| Materias: | |
| Acceso en línea: | https://revistas.unc.edu.ar/index.php/epio/article/view/20301 |
| Aporte de: |
| id |
I10-R359-article-20301 |
|---|---|
| record_format |
ojs |
| spelling |
I10-R359-article-203012018-06-14T15:43:22Z Hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. Application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr Hiperheurística basada en razonamiento con dominio en metaheurísticas x-pso multiobjetivo hy x-fpso cbr. Aplicación sobre una optimización dinámica posibilística parte 1) desarrollos teóricos del algoritmo hiperheurístico hy x-fpso cbr Shweickardt, Gustavo Casanova, Carlos Gimenez, Juan Manuel optimización enjambre de partículas HiperHeurísticas redes neuronales artificiales sistema de distribución de energía eléctrica optimization particles swarm HyperHeuristics artificial neural network electric distribution system In this work the conceptual/theoretical framework of a novel HyperHeuristic, Case Based Reasoning and supported on some variants of MultiObjective Particle Swarm Optimization MetaHeuristic, called X-PSO, are presented.This HyperHeuristic, referred as HY X-FPSO CBR (Case Based Reasoning), works by mean of selection function, aproximated with an Artificial Backporpagation Neural Network. To design and, especially, training the Artificial Neural Network, Swarm Intelligence Principles and the skill that each X-FPSO form exhibit to satisfy it, as well as the Search Space that is defined by the Problems Class to solve, are considered. This HyperHeuristic are designed to be applied in the definition of States Space required for a Possibilistic Optimization on the Mid/Short term Planning of a Electric Distribution System (EDS). En el presente trabajo se desarrolla el marco conceptual/teórico relativo a una novedosa HiperHeurística, basada en Razonamiento y aplicada en el dominio de MetaHeurísticas variantes de la Optimización Por Enjambre de Partículas (PSO), denominadas X-PSO, MultiObjetivo. Esta HiperHeurística, referida como HY X-FPSO CBR (Case Based Reasoning) emplea, como mecanismo de selección de la forma X de la MetaHeurística FPSO a ser aplicada en cierta instancia de decisión, una Función de Elección aproximada mediante una Red Neuronal Artificial tipo Retropropagación. Para el diseño y, particularmente, entrenamiento de la misma, son considerados aspectos relativos a los Principios de la Inteligencia de Grupo y las habilidades que cada forma X-FPSO exhibe para satisfacerlos, así como las características del Espacio de Búsqueda, inherentes a la Clase de Problemas que deben resolverse mediante la HiperHeurística propuesta: Establecer el Espacio de Estados requerido por una Optimización Dinámica Posibilística sobre la Planificación de Mediano/Corto Plazo de un Sistema de Distribución de Energía Eléctrica (SDEE). Escuela de Perfeccionamiento en Investigación Operativa 2018-06-14 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unc.edu.ar/index.php/epio/article/view/20301 Revista de la Escuela de Perfeccionamiento en Investigación Operativa; Vol. 21 Núm. 34 (2013): Noviembre; 8-29 1853-9777 0329-7322 spa https://revistas.unc.edu.ar/index.php/epio/article/view/20301/19947 |
| institution |
Universidad Nacional de Córdoba |
| institution_str |
I-10 |
| repository_str |
R-359 |
| container_title_str |
Revista de la Escuela de Perfeccionamiento en Investigación Operativa |
| language |
Español |
| format |
Artículo revista |
| topic |
optimización enjambre de partículas HiperHeurísticas redes neuronales artificiales sistema de distribución de energía eléctrica optimization particles swarm HyperHeuristics artificial neural network electric distribution system |
| spellingShingle |
optimización enjambre de partículas HiperHeurísticas redes neuronales artificiales sistema de distribución de energía eléctrica optimization particles swarm HyperHeuristics artificial neural network electric distribution system Shweickardt, Gustavo Casanova, Carlos Gimenez, Juan Manuel Hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. Application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr |
| topic_facet |
optimización enjambre de partículas HiperHeurísticas redes neuronales artificiales sistema de distribución de energía eléctrica optimization particles swarm HyperHeuristics artificial neural network electric distribution system |
| author |
Shweickardt, Gustavo Casanova, Carlos Gimenez, Juan Manuel |
| author_facet |
Shweickardt, Gustavo Casanova, Carlos Gimenez, Juan Manuel |
| author_sort |
Shweickardt, Gustavo |
| title |
Hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. Application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr |
| title_short |
Hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. Application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr |
| title_full |
Hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. Application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr |
| title_fullStr |
Hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. Application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr |
| title_full_unstemmed |
Hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. Application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr |
| title_sort |
hyperheuristics based on reasoning with mastery in metaheuristics x-pso multiobjective hy x-fpso cbr. application on a dynamic optimization of possibilities part 1) theoretical developments of the hyperheuristic algorithm hy x-fpso cbr |
| description |
In this work the conceptual/theoretical framework of a novel HyperHeuristic, Case Based Reasoning and supported on some variants of MultiObjective Particle Swarm Optimization MetaHeuristic, called X-PSO, are presented.This HyperHeuristic, referred as HY X-FPSO CBR (Case Based Reasoning), works by mean of selection function, aproximated with an Artificial Backporpagation Neural Network. To design and, especially, training the Artificial Neural Network, Swarm Intelligence Principles and the skill that each X-FPSO form exhibit to satisfy it, as well as the Search Space that is defined by the Problems Class to solve, are considered. This HyperHeuristic are designed to be applied in the definition of States Space required for a Possibilistic Optimization on the Mid/Short term Planning of a Electric Distribution System (EDS). |
| publisher |
Escuela de Perfeccionamiento en Investigación Operativa |
| publishDate |
2018 |
| url |
https://revistas.unc.edu.ar/index.php/epio/article/view/20301 |
| work_keys_str_mv |
AT shweickardtgustavo hyperheuristicsbasedonreasoningwithmasteryinmetaheuristicsxpsomultiobjectivehyxfpsocbrapplicationonadynamicoptimizationofpossibilitiespart1theoreticaldevelopmentsofthehyperheuristicalgorithmhyxfpsocbr AT casanovacarlos hyperheuristicsbasedonreasoningwithmasteryinmetaheuristicsxpsomultiobjectivehyxfpsocbrapplicationonadynamicoptimizationofpossibilitiespart1theoreticaldevelopmentsofthehyperheuristicalgorithmhyxfpsocbr AT gimenezjuanmanuel hyperheuristicsbasedonreasoningwithmasteryinmetaheuristicsxpsomultiobjectivehyxfpsocbrapplicationonadynamicoptimizationofpossibilitiespart1theoreticaldevelopmentsofthehyperheuristicalgorithmhyxfpsocbr AT shweickardtgustavo hiperheuristicabasadaenrazonamientocondominioenmetaheuristicasxpsomultiobjetivohyxfpsocbraplicacionsobreunaoptimizaciondinamicaposibilisticaparte1desarrollosteoricosdelalgoritmohiperheuristicohyxfpsocbr AT casanovacarlos hiperheuristicabasadaenrazonamientocondominioenmetaheuristicasxpsomultiobjetivohyxfpsocbraplicacionsobreunaoptimizaciondinamicaposibilisticaparte1desarrollosteoricosdelalgoritmohiperheuristicohyxfpsocbr AT gimenezjuanmanuel hiperheuristicabasadaenrazonamientocondominioenmetaheuristicasxpsomultiobjetivohyxfpsocbraplicacionsobreunaoptimizaciondinamicaposibilisticaparte1desarrollosteoricosdelalgoritmohiperheuristicohyxfpsocbr |
| first_indexed |
2024-09-03T22:23:14Z |
| last_indexed |
2024-09-03T22:23:14Z |
| _version_ |
1809215331007201280 |