The use of predictive models in Geographic Information Systems to locate Inca road sections between the Lerma Valley and the Escoipe Quebrada, Salta, Argentina

This paper’s goal is to assess whether the modeling techniques available in Geographic Information Systems, namely the calculation of Least Cost Paths, are useful tools for locating unknown sections of the Inca Royal Road or Qhapaq Ñan. Based on environmental variables that influenced the layout of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mignone, Pablo
Formato: Artículo publishedVersion Artículo evaluado por pares
Lenguaje:Español
Publicado: Facultad de Filosofía y Letras, Universidad Nacional de Cuyo 2019
Materias:
Acceso en línea:http://revistas.uncu.edu.ar/ojs/index.php/analarqueyetno/article/view/3734
http://suquia.ffyh.unc.edu.ar/handle/suquia/11587
Aporte de:
id I10-R181-suquia-11587
record_format dspace
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-181
collection Suquía - Instituto de Antropología de Córdoba (IDACOR, CONICET y UNC)
language Español
topic Least Cost Paths
Qhapac Ñan
predictability
Caminos de menor coste
Qhapaq Ñan
predictibilidad
spellingShingle Least Cost Paths
Qhapac Ñan
predictability
Caminos de menor coste
Qhapaq Ñan
predictibilidad
Mignone, Pablo
The use of predictive models in Geographic Information Systems to locate Inca road sections between the Lerma Valley and the Escoipe Quebrada, Salta, Argentina
topic_facet Least Cost Paths
Qhapac Ñan
predictability
Caminos de menor coste
Qhapaq Ñan
predictibilidad
description This paper’s goal is to assess whether the modeling techniques available in Geographic Information Systems, namely the calculation of Least Cost Paths, are useful tools for locating unknown sections of the Inca Royal Road or Qhapaq Ñan. Based on environmental variables that influenced the layout of other segments of Inca roads, a Least Cost Path was used to predict a 36-km long segment of the Inca road, which was then checked in the field. This segment runs between the Lerma and Calchaquí Valleys and was of paramount importance for connecting the Prepuna and Puna in the province of Salta, Argentina.
format Artículo
publishedVersion
Artículo evaluado por pares
author Mignone, Pablo
author_facet Mignone, Pablo
author_sort Mignone, Pablo
title The use of predictive models in Geographic Information Systems to locate Inca road sections between the Lerma Valley and the Escoipe Quebrada, Salta, Argentina
title_short The use of predictive models in Geographic Information Systems to locate Inca road sections between the Lerma Valley and the Escoipe Quebrada, Salta, Argentina
title_full The use of predictive models in Geographic Information Systems to locate Inca road sections between the Lerma Valley and the Escoipe Quebrada, Salta, Argentina
title_fullStr The use of predictive models in Geographic Information Systems to locate Inca road sections between the Lerma Valley and the Escoipe Quebrada, Salta, Argentina
title_full_unstemmed The use of predictive models in Geographic Information Systems to locate Inca road sections between the Lerma Valley and the Escoipe Quebrada, Salta, Argentina
title_sort use of predictive models in geographic information systems to locate inca road sections between the lerma valley and the escoipe quebrada, salta, argentina
publisher Facultad de Filosofía y Letras, Universidad Nacional de Cuyo
publishDate 2019
url http://revistas.uncu.edu.ar/ojs/index.php/analarqueyetno/article/view/3734
http://suquia.ffyh.unc.edu.ar/handle/suquia/11587
work_keys_str_mv AT mignonepablo theuseofpredictivemodelsingeographicinformationsystemstolocateincaroadsectionsbetweenthelermavalleyandtheescoipequebradasaltaargentina
AT mignonepablo empleodelmodeladopredictivodesistemasdeinformaciongeograficaparaelhallazgodecaminosconcomponentesinkaicosentreelvalledelermaylaquebradadeescoipesaltaargentina
AT mignonepablo useofpredictivemodelsingeographicinformationsystemstolocateincaroadsectionsbetweenthelermavalleyandtheescoipequebradasaltaargentina
bdutipo_str Repositorios
_version_ 1764820398698921988