|
|
|
|
| LEADER |
01304nam a2200277a 44500 |
| 001 |
UBP00870 |
| 003 |
AR-CdUBP |
| 005 |
20220310151038.0 |
| 008 |
151212s1997#######|||||||||||||||||eng|d |
| 020 |
|
|
|a 0-471-17980-9
|
| 040 |
|
|
|a AR-CdUBP
|b spa
|
| 041 |
|
|
|a eng
|
| 100 |
|
|
|a Berry, Michael
|
| 245 |
1 |
0 |
|a Data mining techniques :
|b for marketing, sales, and customer support /
|c Michael Berry, Gordon Linoff
|
| 260 |
|
|
|a New York :
|b Wiler Computer,
|c 1997
|
| 300 |
|
|
|a x, 454 p. ;
|c 23 cm.
|
| 505 |
0 |
|
|a 1. Why Data Mining?. 2. The Virtuous Cycle of Data Mining. 3. The Virtuous Cycle in Practice. 4. What Can Data Mining Do?. 5. Data Mining Methodology. 6. Measuring the Effectiveness of Data Mining. 7. Overview of Data MIning Techniques. 8. Market Basket Analysis. 9. Memory-Based Reasoning. 10. Automatic Cluster Detection. 11. Link Analysis. 12. Decision Trees. 13. Artificial Naural Networks. 14. Genetic Algorithms. 15. Data Mining and the Corporate Data Warehouse. 16. Where does OLAP fit in?. 17. Choosing the right Tool for the job. 18. Putting Data Mining to work.
|
| 650 |
|
4 |
|a DATA MINING
|
| 653 |
|
|
|a INFORMATICA
|
| 700 |
1 |
|
|a Linoff, Gordon
|
| 930 |
|
|
|a INFORMATICA
|
| 931 |
|
|
|a 00870
|b UBP
|
| 942 |
|
|
|2 cdu
|c BK
|
| 945 |
|
|
|a SMM
|
| 984 |
|
|
|a 004.62
|b B459
|
| 999 |
|
|
|c 16485
|d 16485
|