Evolution of linear motifs within the papillomavirus E7 oncoprotein

Many protein functions can be traced to linear sequence motifs of less than five residues, which are often found within intrinsically disordered domains. In spite of their prevalence, their role in protein evolution is only beginning to be understood. The study of papillomaviruses has provided many...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chemes, L.B
Otros Autores: Glavina, J., Faivovich, J., De Prat-Gay, G., Sánchez, I.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17828caa a22015257a 4500
001 PAPER-9319
003 AR-BaUEN
005 20230518203914.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84865074702 
024 7 |2 cas  |a Papillomavirus E7 Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JMOBA 
100 1 |a Chemes, L.B. 
245 1 0 |a Evolution of linear motifs within the papillomavirus E7 oncoprotein 
260 |c 2012 
270 1 0 |m De Prat-Gay, G.; Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (1405), Buenos Aires, Argentina; email: gpg@leloir.org.ar 
506 |2 openaire  |e Política editorial 
504 |a Davey, N.E., Van Roey, K., Weatheritt, R.J., Toedt, G., Uyar, B., Altenberg, B., Attributes of short linear motifs (2011) Mol. Biosyst. 
504 |a Neduva, V., Russell, R.B., Linear motifs: Evolutionary interaction switches (2005) FEBS Lett., 579, pp. 3342-3345 
504 |a Tan, C.S., Jorgensen, C., Linding, R., Roles of "junk phosphorylation" in modulating biomolecular association of phosphorylated proteins? (2010) Cell Cycle, 9, pp. 1276-1280 
504 |a Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P., Morgan, D.O., Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution (2009) Science, 325, pp. 1682-1686 
504 |a Davey, N.E., Trave, G., Gibson, T.J., How viruses hijack cell regulation (2011) Trends Biochem. Sci., 36, pp. 159-169 
504 |a Fuxreiter, M., Tompa, P., Simon, I., Local structural disorder imparts plasticity on linear motifs (2007) Bioinformatics, 23, pp. 950-956 
504 |a Garcia-Alai, M.M., Gallo, M., Salame, M., Wetzler, D.E., McBride, A.A., Paci, M., Molecular basis for phosphorylation-dependent, PEST-mediated protein turnover (2006) Structure, 14, pp. 309-319 
504 |a Penrose, K.J., Garcia-Alai, M., Prat Gay, G.D., McBride, A.A., Casein kinase II phosphorylation-induced conformational switch triggers degradation of the papillomavirus E2 protein (2004) J. Biol. Chem., 279, pp. 22430-22439 
504 |a Garcia-Vallve, S., Alonso, A., Bravo, I.G., Papillomaviruses: Different genes have different histories (2005) Trends Microbiol., 13, pp. 514-521 
504 |a Sanchez, I.E., Dellarole, M., Gaston, K., De Prat Gay, G., Comprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics (2008) Nucleic Acids Res., 36, pp. 756-769 
504 |a Chemes, L.B., Sánchez, I.E., Alonso, L.G., De Prat-Gay, G., Intrinsic disorder in the human papillomavirus E7 protein (2011) Flexible Viruses: Structural Disorder Within Viral Proteins, 1, pp. 313-347 
504 |a Alonso, L.G., Garcia-Alai, M.M., Nadra, A.D., Lapena, A.N., Almeida, F.L., Gualfetti, P., Prat-Gay, G.D., High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners (2002) Biochemistry, 41, pp. 10510-10518 
504 |a Garcia-Alai, M.M., Alonso, L.G., De Prat-Gay, G., The N-terminal module of HPV16 E7 is an intrinsically disordered domain that confers conformational and recognition plasticity to the oncoprotein (2007) Biochemistry, 46, pp. 10405-10412 
504 |a Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7 (2006) Oncogene, 25, pp. 5953-5959 
504 |a Liu, X., Clements, A., Zhao, K., Marmorstein, R., Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor (2006) J. Biol. Chem., 281, pp. 578-586 
504 |a Liang, Y.J., Chang, H.S., Wang, C.Y., Yu, W.C., DYRK1A stabilizes HPV16E7 oncoprotein through phosphorylation of the threonine 5 and threonine 7 residues (2008) Int. J. Biochem. Cell Biol., 40, pp. 2431-2441 
504 |a Himpel, S., Tegge, W., Frank, R., Leder, S., Joost, H.G., Becker, W., Specificity determinants of substrate recognition by the protein kinase DYRK1A (2000) J. Biol. Chem., 275, pp. 2431-2438 
504 |a Xiao, B., Spencer, J., Clements, A., Ali-Khan, N., Mittnacht, S., Broceno, C., Crystal structure of the retinoblastoma tumor suppressor protein bound to E2F and the molecular basis of its regulation (2003) Proc. Natl Acad. Sci. USA, 100, pp. 2363-2368 
504 |a Liu, X., Marmorstein, R., Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor (2007) Genes Dev., 21, pp. 2711-2716 
504 |a Lee, C., Chang, J.H., Lee, H.S., Cho, Y., Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor (2002) Genes Dev., 16, pp. 3199-3212 
504 |a Wang, J., Zhou, D., Prabhu, A., Schlegel, R., Yuan, H., The canine papillomavirus and gamma HPV E7 proteins use an alternative domain to bind and destabilize the retinoblastoma protein (2010) PLoS Pathog., 6, p. 1001089 
504 |a Allende, J.E., Allende, C.C., Protein kinases. 4. Protein kinase CK2: An enzyme with multiple substrates and a puzzling regulation (1995) FASEB J., 9, pp. 313-323 
504 |a Guttler, T., Madl, T., Neumann, P., Deichsel, D., Corsini, L., Monecke, T., NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1 (2010) Nat. Struct. Mol. Biol., 17, pp. 1367-1376 
504 |a Gould, C.M., Diella, F., Via, A., Puntervoll, P., Gemund, C., Chabanis-Davidson, S., ELM: The status of the 2010 eukaryotic linear motif resource (2010) Nucleic Acids Res., 38, pp. 167-D180 
504 |a Reinstein, E., Scheffner, M., Oren, M., Ciechanover, A., Schwartz, A., Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: Targeting via ubiquitination of the N-terminal residue (2000) Oncogene, 19, pp. 5944-5950 
504 |a Chemes, L.B., Sanchez, I.E., Smal, C., De Prat-Gay, G., Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7 (2010) FEBS J., 277, pp. 973-988 
504 |a Lee, J.O., Russo, A.A., Pavletich, N.P., Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7 (1998) Nature, 391, pp. 859-865 
504 |a Firzlaff, J.M., Galloway, D.A., Eisenman, R.N., Luscher, B., The E7 protein of human papillomavirus type 16 is phosphorylated by casein kinase II (1989) New Biol., 1, pp. 44-53 
504 |a Chemes, L.B., Sanchez, I.E., De Prat-Gay, G., Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target (2011) J. Mol. Biol., 412, pp. 267-284 
504 |a Smal, C., Wetzler, D.E., Dantur, K.I., Chemes, L.B., Garcia-Alai, M.M., Dellarole, M., The human papillomavirus E7-E2 interaction mechanism in vitro reveals a finely tuned system for modulating available E7 and E2 proteins (2009) Biochemistry, 48, pp. 11939-11949 
504 |a Knapp, A.A., McManus, P.M., Bockstall, K., Moroianu, J., Identification of the nuclear localization and export signals of high risk HPV16 E7 oncoprotein (2009) Virology, 383, pp. 60-68 
504 |a Tomaic, V., Gardiol, D., Massimi, P., Ozbun, M., Myers, M., Banks, L., Human and primate tumour viruses use PDZ binding as an evolutionarily conserved mechanism of targeting cell polarity regulators (2009) Oncogene, 28, pp. 1-8 
504 |a Ghim, S.J., Rector, A., Delius, H., Sundberg, J.P., Jenson, A.B., Van Ranst, M., Equine papillomavirus type 1: Complete nucleotide sequence and characterization of recombinant virus-like particles composed of the EcPV-1 L1 major capsid protein (2004) Biochem. Biophys. Res. Commun., 324, pp. 1108-1115 
504 |a Hirt, L., Hirsch-Behnam, A., De Villiers, E.M., Nucleotide sequence of human papillomavirus (HPV) type 41: An unusual HPV type without a typical E2 binding site consensus sequence (1991) Virus Res., 18, pp. 179-189 
504 |a Ekstrom, J., Forslund, O., Dillner, J., Three novel papillomaviruses (HPV109, HPV112 and HPV114) and their presence in cutaneous and mucosal samples (2010) Virology, 397, pp. 331-336 
504 |a Kohler, A., Gottschling, M., Forster, J., Rowert-Huber, J., Stockfleth, E., Nindl, I., Genomic characterization of a novel human papillomavirus (HPV-117) with a high viral load in a persisting wart (2010) Virology, 399, pp. 129-133 
504 |a Chouhy, D., Gorosito, M., Sanchez, A., Serra, E.C., Bergero, A., Fernandez Bussy, R., Giri, A.A., New generic primer system targeting mucosal/genital and cutaneous human papillomaviruses leads to the characterization of HPV 115, a novel Beta-papillomavirus species 3 (2010) Virology, 397, pp. 205-216 
504 |a Christensen, N.D., Cladel, N.M., Reed, C.A., Han, R., Rabbit oral papillomavirus complete genome sequence and immunity following genital infection (2000) Virology, 269, pp. 451-461 
504 |a Danos, O., Katinka, M., Yaniv, M., Human papillomavirus 1a complete DNA sequence: A novel type of genome organization among papovaviridae (1982) EMBO J., 1, pp. 231-236 
504 |a Hatama, S., Nobumoto, K., Kanno, T., Genomic and phylogenetic analysis of two novel bovine papillomaviruses, BPV-9 and BPV-10 (2008) J. Gen. Virol., 89, pp. 158-163 
504 |a Rector, A., Lemey, P., Tachezy, R., Mostmans, S., Ghim, S.J., Van Doorslaer, K., Ancient papillomavirus-host co-speciation in Felidae (2007) Genome Biol., 8, p. 57 
504 |a Tan, C.H., Tachezy, R., Van Ranst, M., Chan, S.Y., Bernard, H.U., Burk, R.D., The Mastomys natalensis papillomavirus: Nucleotide sequence, genome organization, and phylogenetic relationship of a rodent papillomavirus involved in tumorigenesis of cutaneous epithelia (1994) Virology, 198, pp. 534-541 
504 |a Bernard, H.U., Burk, R.D., Chen, Z., Van Doorslaer, K., Hausen, H., De Villiers, E.M., Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments (2010) Virology, 401, pp. 70-79 
504 |a Bravo, I.G., De Sanjose, S., Gottschling, M., The clinical importance of understanding the evolution of papillomaviruses (2010) Trends Microbiol., 18, pp. 432-438 
504 |a Narechania, A., Terai, M., Chen, Z., Desalle, R., Burk, R.D., Lack of the canonical pRB-binding domain in the E7 ORF of artiodactyl papillomaviruses is associated with the development of fibropapillomas (2004) J. Gen. Virol., 85, pp. 1243-1250 
504 |a Van Doorslaer, K., Sidi, A.O., Zanier, K., Rybin, V., Deryckere, F., Rector, A., Identification of unusual E6 and E7 proteins within avian papillomaviruses: Cellular localization, biophysical characterization, and phylogenetic analysis (2009) J. Virol., 83, pp. 8759-8770 
504 |a Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797 
504 |a Rivals, I., Personnaz, L., Taing, L., Potier, M.C., Enrichment or depletion of a GO category within a class of genes: Which test? (2007) Bioinformatics, 23, pp. 401-407 
504 |a Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing (1995) J. R. Stat. Soc., B, 57, pp. 289-300 
504 |a Fitch, W.M., Toward defining the course of evolution: Minimum change for a specific tree topology (1971) Syst. Zool., 20, pp. 406-416 
504 |a Dantur, K., Alonso, L., Castano, E., Morelli, L., Centeno-Crowley, J.M., Vighi, S., De Prat-Gay, G., Cytosolic accumulation of HPV16 E7 oligomers supports different transformation routes for the prototypic viral oncoprotein: The amyloid-cancer connection (2009) Int. J. Cancer, 125, pp. 1902-1911 
504 |a Kadaveru, K., Vyas, J., Schiller, M.R., Viral infection and human disease-insights from minimotifs (2008) Front Biosci., 13, pp. 6455-6471 
520 3 |a Many protein functions can be traced to linear sequence motifs of less than five residues, which are often found within intrinsically disordered domains. In spite of their prevalence, their role in protein evolution is only beginning to be understood. The study of papillomaviruses has provided many insights on the evolution of protein structure and function. We have chosen the papillomavirus E7 oncoprotein as a model system for the evolution of functional linear motifs. The multiple functions of E7 proteins from paradigmatic papillomavirus types can be explained to a large extent in terms of five linear motifs within the intrinsically disordered N-terminal domain and two linear motifs within the globular homodimeric C-terminal domain. We examined the motif inventory of E7 proteins from over 200 known papillomavirus types and found that the motifs reported for paradigmatic papillomavirus types are absent from many uncharacterized E7 proteins. Several motif pairs occur more often than expected, suggesting that linear motifs may evolve and function in a cooperative manner. The E7 linear motifs have appeared or disappeared multiple times during papillomavirus evolution, confirming the evolutionary plasticity of short functional sequences. Four of the motifs appeared several times during papillomavirus evolution, providing direct evidence for convergent evolution. Interestingly, the evolution pattern of a motif is independent of its location in a globular or disordered domain. The correlation between the presence of some motifs and virus host specificity and tissue tropism suggests that linear motifs play a role in the adaptive evolution of papillomaviruses. © 2012 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Instituto Nacional del Cáncer 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2010-1052 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020090200727 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: PICT 2006-223, PICT 2007-2202 
536 |a Detalles de la financiación: We acknowledge funding from Agencia Nacional de Promoción Científica y Tecnológica ( PICT 2010-1052 to I.E.S. and PICT 2006-223 and PICT 2007-2202 to J.F.), Universidad de Buenos Aires ( UBACyT 20020090200727 to J.F.), Consejo Nacional de Investigaciones Científicas y Técnicas (postdoctoral fellowship to L.B.C.; J.F., G.d.P.G., and I.E.S. are CONICET career investigators,) and Instituto Nacional del Cáncer (graduate fellowship to J.G.). We thank Ignacio G. Bravo, Robert Burk, and Zigui Chen for kindly providing PV phylogenetic trees. Appendix A 
593 |a Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (1405), Buenos Aires, Argentina 
593 |a Protein Physiology Laboratory, Departamento de Química Biológica, Ciudad Universitaria, Intendente Güiraldes 2160, 1428 Buenos Aires, Argentina 
593 |a División Herpetología, Museo Argentino de Ciencias Naturales-CONICET, Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ADAPTIVE EVOLUTION 
690 1 0 |a CONVERGENT EVOLUTION 
690 1 0 |a INTRINSIC DISORDER 
690 1 0 |a SEQUENCE MOTIF 
690 1 0 |a HOMODIMER 
690 1 0 |a PROTEIN E7 
690 1 0 |a AMINO TERMINAL SEQUENCE 
690 1 0 |a ARTICLE 
690 1 0 |a CARBOXY TERMINAL SEQUENCE 
690 1 0 |a CONVERGENT EVOLUTION 
690 1 0 |a ENZYME PHOSPHORYLATION 
690 1 0 |a GENE MUTATION 
690 1 0 |a GENETIC VARIABILITY 
690 1 0 |a MOLECULAR EVOLUTION 
690 1 0 |a NONHUMAN 
690 1 0 |a PAPILLOMA VIRUS 
690 1 0 |a PAPILLOMAVIRUS INFECTION 
690 1 0 |a PDZ DOMAIN 
690 1 0 |a PHENOTYPE 
690 1 0 |a PHYLOGENY 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a PROTEIN MOTIF 
690 1 0 |a VIRAL TROPISM 
690 1 0 |a VIRUS CELL INTERACTION 
690 1 0 |a VIRUS VIRULENCE 
690 1 0 |a AMINO ACID MOTIFS 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a EVOLUTION, MOLECULAR 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a PAPILLOMAVIRIDAE 
690 1 0 |a PAPILLOMAVIRUS E7 PROTEINS 
690 1 0 |a PROTEIN STRUCTURE, TERTIARY 
690 1 0 |a SEQUENCE ALIGNMENT 
690 1 0 |a PAPILLOMAVIRIDAE 
650 1 7 |2 spines  |a VIRUS 
700 1 |a Glavina, J. 
700 1 |a Faivovich, J. 
700 1 |a De Prat-Gay, G. 
700 1 |a Sánchez, I.E. 
773 0 |d 2012  |g v. 422  |h pp. 336-346  |k n. 3  |p J. Mol. Biol.  |x 00222836  |w (AR-BaUEN)CENRE-1757  |t Journal of Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865074702&doi=10.1016%2fj.jmb.2012.05.036&partnerID=40&md5=4638d78371fff5c2c18a53f4d8ba1a9d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jmb.2012.05.036  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00222836_v422_n3_p336_Chemes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222836_v422_n3_p336_Chemes  |y Registro en la Biblioteca Digital 
961 |a paper_00222836_v422_n3_p336_Chemes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70272