An excitable electronic circuit as a sensory neuron model

An electronic circuit device, inspired on the FitzHughNagumo model of neuronal excitability, was constructed and shown to operate with characteristics compatible with those of biological sensory neurons. The nonlinear dynamical model of the electronics quantitatively reproduces the experimental obse...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Medeiros, B.N.S
Otros Autores: Minces, V., Mindlin, G.B, Copelli, M., Leite, J.R.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09621caa a22010217a 4500
001 PAPER-9275
003 AR-BaUEN
005 20230518203910.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84868470677 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Medeiros, B.N.S. 
245 1 3 |a An excitable electronic circuit as a sensory neuron model 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2012 
270 1 0 |m Medeiros, B.N.S.; Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil 
506 |2 openaire  |e Política editorial 
504 |a Adrian, E.D., The impulses produced by sensory nerve endings: Part i (1926) J. Physiol. (London), 61, pp. 49-72 
504 |a Aliaga, J., Busca, N., Minces, V., Mindlin, G.B., Pando, B., Salles, A., Sczcupak, L., Electronic neuron within a ganglion of a leech (Hirudo medicinalis) (2003) Phys. Rev. e, 67, p. 061915 
504 |a Arbib, M.A., (2002) The Handbook of Brain Theory and Neural Networks, , MIT Press 
504 |a Assis, V.R.V., Copelli, M., Dynamic range of hypercubic stochastic excitable media (2008) Phys. Rev. e, 77, p. 011923 
504 |a Barlow, H.B., Single units and sensation: A neuron doctrine for perceptual psychology (1972) Perception, 1, pp. 371-394 
504 |a Chialvo, D.R., Emergent complex neural dynamics (2010) Nature Phys., 6, pp. 744-750 
504 |a Copelli, M., Roque, A.C., Oliveira, R.F., Kinouchi, O., Physics of psychophysics: Stevens andWeber- Fechner laws are transfer functions of excitable media (2002) Phys. Rev. e, 65, p. 060901 
504 |a Copelli, M., Kinouchi, O., Intensity coding in two-dimensional excitable neural networks (2005) Physica A, 349, pp. 431-442 
504 |a Copelli, M., Oliveira, R.F., Roque, A.C., Kinouchi, O., Signal compression in the sensory periphery (2005) Neurocomputing, 65-66, pp. 691-696 
504 |a Copelli, M., Campos, P.R.A., Excitable scalefree networks (2007) Eur. Phys. J. B, 56, pp. 273-278 
504 |a Dayan, P., Abott, L.F., (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, , MIT Press 
504 |a Deans, M.R., Volgyi, B., Goodenough, D.A., Bloomfield, S.A., Paul, D.L., Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina (2002) Neuron, 36, pp. 703-712 
504 |a De Souza, J.E.G., Neto, B.B., Dos Santos, F.L., De Melo, C.P., Santos, M.S., Ludermir, T.B., Polypyrrole based aroma sensor (1999) Synth. Met., 102, pp. 1296-1299 
504 |a Furtado, L.S., Copelli, M., Response of electrically coupled spiking neurons: A cellular automaton approach (2006) Phys. Rev. e, 73, p. 011907 
504 |a Gollo, L.L., Kinouchi, O., Copelli, M., Active dendrites enhance neuronal dynamic range (2009) PLoS Comput. Biol., 5, pp. e1000402 
504 |a Hille, B., (2001) Ion Channels of Excitable Membranes, , 3rd edition (Sinauer Associates (Sunderland)) 
504 |a Hodgkin, A.L., Huxley, A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve (1952) J. Physiol., 117, pp. 500-544 
504 |a Izhikevich, E.M., (2007) Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, , MIT Press, London 
504 |a Kinouchi, O., Copelli, M., Optimal dynamical range of excitable networks at criticality (2006) Nature Phys., 2, pp. 348-351 
504 |a Koch, C., (1999) Biophysics of Computation, , Oxford University Press, NY 
504 |a Larremore, D.B., Shew, W.L., Restrepo, J.G., Predicting criticality and dynamic range in complex networks: Effects of topology (2011) Phys. Rev. Lett., 106, p. 058101 
504 |a Mainen, Z., Sejnowski, T., Reliability of spike timing in neocortical neurons (1995) Science, 268, pp. 1503-1506 
504 |a Petracchi, D., Barbi, M., Chillemi, S., Pantazelou, E., Pierson, D., Dames, C., Wilkens, L., Moss, F., A test for a biological signal encoded by noise (1995) Int. J. Bifurcation and Chaos, 5, pp. 89-100 
504 |a Pikovsky, A.S., Kurths, J., Coherence resonance in a noise-driven excitable system (1997) Phys. Rev. Lett., 78, pp. 775-778 
504 |a Publio, R., Oliveira, R.F., Roque, A.C., A computational study on the role of gap junctions and rod Ih conductance in the enhancement of the dynamic range of the retina (2009) PLoS ONE, 4, pp. e6970 
504 |a Ribeiro, T.L., Copelli, M., Deterministic excitable media under Poisson drive: Power law responses, spiral waves and dynamic range (2008) Phys. Rev. e, 77, p. 051911 
504 |a Rieke, F., Warland, D., De Ruyter Van Steveninck, R., Bialek, W., (1999) Spikes: Exploring the Neural Code, , MIT Press, Cambridge, MA 
504 |a Rinzel, J., Ermentrout, B., Analysis of neural excitability and oscillations (1998) Methods in Neuronal Modeling: From Ions to Networks, pp. 251-292. , eds. Koch C. & Segev, I., 2nd edition (MIT Press) 
504 |a Rospars, J.-P., Lánský, P., Duchamp-Viret, P., Duchamp, A., Spiking frequency versus odorant concentration in olfactory receptor neurons (2000) BioSyst., 58, pp. 133-141 
504 |a Senturia, S.D., Wedlock, B.D., (1981) Electronic Circuits and Applications, , John Wiley 
504 |a Shew, W., Yang, H., Petermann, T., Roy, R., Plenz, D., Neuronal avalanches imply maximum dynamic range in cortical networks at criticality (2009) J. Neurosci., 29, pp. 15595-15600 
504 |a Sitt, J.D., Aliaga, J., Versatile biologically inspired electronic neuron (2007) Phys. Rev. e, 76, p. 051919 
504 |a Szucs, A., Varona, P., Volkovskii, A.R., Abarbanel, H.D.I., Rabinovich, M., Selverston, A.I., Interacting biological and electronic neurons generate realistic oscillatory rhythms (2000) Neuroreport, 11, pp. 563-569 
504 |a Young, M., Yamane, S., Sparse population coding of faces in the inferotemporal cortex (1992) Science, 256, pp. 1327-1331 
520 3 |a An electronic circuit device, inspired on the FitzHughNagumo model of neuronal excitability, was constructed and shown to operate with characteristics compatible with those of biological sensory neurons. The nonlinear dynamical model of the electronics quantitatively reproduces the experimental observations on the circuit, including the Hopf bifurcation at the onset of tonic spiking. Moreover, we have implemented an analog noise generator as a source to study the variability of the spike trains. When the circuit is in the excitable regime, coherence resonance is observed. At sufficiently low noise intensity the spike trains have Poisson statistics, as in many biological neurons. The transfer function of the stochastic spike trains has a dynamic range of 6 dB, close to experimental values for real olfactory receptor neurons. © 2012 World Scientific Publishing Company.  |l eng 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 
536 |a Detalles de la financiación: Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco 
536 |a Detalles de la financiación: National Institutes of Health 
536 |a Detalles de la financiación: B. N. S. Medeiros, M. Copelli and J. R. Rios Leite acknowledge financial support from Brazilian agencies CNPq, FACEPE, CAPES and special programs PRONEX, PRONEM and INCEMAQ. G. B. Mindlin acknowledges support from NIH. It is a pleasure to thank Hugo L. D. S. Cavalcante for enlightening discussions during the preparation of this work, as well as Marcos Nascimento for technical support. 
593 |a Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil 
593 |a Department of Cognitive Neuroscience, University of California San Diego, San Diego, CA 92093-0515, United States 
593 |a Departamento de Física, FCEN, Ciudad Universitaria, Pab. I, 1428 Buenos Aires, Argentina 
690 1 0 |a COHERENCE RESONANCE 
690 1 0 |a DYNAMIC RANGE 
690 1 0 |a ELECTRONIC CIRCUIT 
690 1 0 |a EXCITABLE ELEMENT 
690 1 0 |a HOPF BIFURCATION 
690 1 0 |a NETWORKS (CIRCUITS) 
690 1 0 |a STOCHASTIC SYSTEMS 
690 1 0 |a TIMING CIRCUITS 
690 1 0 |a COHERENCE RESONANCE 
690 1 0 |a DYNAMIC RANGE 
690 1 0 |a EXCITABLE ELEMENT 
690 1 0 |a EXPERIMENTAL VALUES 
690 1 0 |a FITZHUGH-NAGUMO MODEL 
690 1 0 |a NONLINEAR DYNAMICAL MODELS 
690 1 0 |a OLFACTORY RECEPTOR NEURONS 
690 1 0 |a POISSON STATISTIC 
690 1 0 |a NEURONS 
700 1 |a Minces, V. 
700 1 |a Mindlin, G.B. 
700 1 |a Copelli, M. 
700 1 |a Leite, J.R.R. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2012  |g v. 22  |k n. 10  |p Int. J. Bifurcation Chaos  |x 02181274  |w (AR-BaUEN)CENRE-5216  |t International Journal of Bifurcation and Chaos 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84868470677&doi=10.1142%2fS0218127412502446&partnerID=40&md5=087a08cde95aaf85646465c3f78f594f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S0218127412502446  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02181274_v22_n10_p_Medeiros  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02181274_v22_n10_p_Medeiros  |y Registro en la Biblioteca Digital 
961 |a paper_02181274_v22_n10_p_Medeiros  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70228