Microwave response of anisotropic magnetorheological elastomers: Model and experiments

We present ferromagnetic resonance measurements of Fe 3O 4 nanoparticles which have been dispersed in an elastomeric polymer [polydimethylsiloxane (PDMS)] at two different concentrations (5% and 15% w/w), and then cured in the presence of a uniform magnetic field. With this procedure it is possible...

Descripción completa

Detalles Bibliográficos
Autor principal: Butera, Alejandro Ricardo
Otros Autores: Ulvarez, N., Jorge, G., Ruiz, M.M, Mietta, J.L, Negri, R.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07400caa a22006977a 4500
001 PAPER-9236
003 AR-BaUEN
005 20241125142812.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84869066410 
030 |a PRBMD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Butera, Alejandro Ricardo 
245 1 0 |a Microwave response of anisotropic magnetorheological elastomers: Model and experiments 
260 |c 2012 
270 1 0 |m Butera, A.; Centro Atómico Bariloche (CNEA), Instituto Balseiro (U. N. Cuyo), 8400 Bariloche, Río Negro, Argentina; email: butera@cab.cnea.gov.ar 
504 |a Coey, J.M.D., (2010) Magnetism and Magnetic Materials, , Cambridge University Press, Cambridge, UK 
504 |a Roca, A.G., Morales, M.P., O'Grady, K., Serna, C.J., (2006) Nanotechnology, 17, p. 2783. , NNOTER 0957-4484 10.1088/0957-4484/17/11/010 
504 |a Goya, G.F., Berquó, T.S., Fonseca, F.C., Morales, M.P., (2003) J. Appl. Phys., 94, p. 3520. , JAPIAU 0021-8979 10.1063/1.1599959 
504 |a Vargas, J.M., Lima, E., Zysler, R.D., Duque, J.G.S., De Biasi, E., Knobel, M., (2008) Eur. Phys. J. B, 64, p. 211. , EPJBFY 1434-6028 10.1140/epjb/e2008-00294-6 
504 |a Lind, D.M., Berry, S.D., Chern, G., Mathias, H., Testardi, L.R., (1992) Phys. Rev. B, 45, p. 1838. , PRBMDO 1098-0121 10.1103/PhysRevB.45.1838 
504 |a Vargas, J.M., Gómez, J., Zysler, R.D., Butera, A., (2007) Nanotechnology, 18, p. 115714. , NNOTER 0957-4484 10.1088/0957-4484/18/11/115714 
504 |a Mietta, J.L., Ruiz, M.M., Antonel, P.S., Pérez, O.E., Butera, A., Jorge, G., Negri, R.M., (2012) Langmuir, 28, p. 6985. , LANGD5 0743-7463 10.1021/la204823k 
504 |a Antonel, P.S., Jorge, G., Pérez, O.E., Butera, A., Leyva, A.G., Negri, R.M., (2011) J. Appl. Phys., 110, p. 043920. , JAPIAU 0021-8979 10.1063/1.3624602 
504 |a Butera, A., (2006) Eur. Phys. J. B, 52, p. 297. , EPJBFY 1434-6028 10.1140/epjb/e2006-00296-4 
504 |a Smit, J., Beljers, H.G., (1955) Philips Res. Rep., 10, p. 113 
504 |a Netzelmann, U., (1990) J. Appl. Phys., 68, p. 1800. , JAPIAU 0021-8979 10.1063/1.346613 
504 |a Butera, A., Zhou, J.N., Barnard, J.A., (1999) Phys. Rev. B, 60, p. 12270. , PRBMDO 1098-0121 10.1103/PhysRevB.60.12270 
504 |a Gómez, J., Butera, A., Barnard, J.A., (2004) Phys. Rev. B, 70, p. 054428. , PRBMDO 1098-0121 10.1103/PhysRevB.70.054428 
504 |a Spasova, M., Wiedwald, U., Ramchal, R., Farle, M., Hilgendorff, M., Giersig, M., (2002) J. Magn. Magn. Mater., 240, p. 40. , JMMMDC 0304-8853 10.1016/S0304-8853(01)00723-5 
504 |a Bickford, Jr.L.R., (1950) Phys. Rev., 78, p. 449. , PHRVAO 0031-899X 10.1103/PhysRev.78.449 
504 |a Krebs, J.J., Lind, D.M., Berry, S.D., (1993) J. Appl. Phys., 73, p. 6457. , JAPIAU 0021-8979 10.1063/1.352632 
504 |a Van Der Heijden, P.A.A., Van Opstal, M.G., Swiiste, C.H.W., Bloemen, P.H.J., Gaines, J.M., De Jonge, W.J.M., (1998) J. Magn. Magn. Mater., 182, p. 71. , JMMMDC 0304-8853 10.1016/S0304-8853(97)01017-2 
504 |a Bodziony, T., Guskos, N., Typek, J., Roslaniec, Z., Narkiewicz, U., Maryniak, M., (2004) Rev. Adv. Mater. Sci., 8, p. 86 
504 |a Butera, A., Kang, S.S., Nikles, D.E., Harrell, J.W., (2004) Physica B, 354, p. 108. , PHYBE3 0921-4526 10.1016/j.physb.2004.09.029 
504 |a Butera, A., Weston, J.L., Barnard, J.A., (2004) J. Magn. Magn. Mater., 284, p. 17. , JMMMDC 0304-8853 10.1016/j.jmmm.2004.06.015 
504 |a Curiale, J., Sánchez, R.D., Ramos, C.A., Leyva, A.G., Butera, A., (2008) J. Magn. Magn. Mater., 320, p. 218. , JMMMDC 0304-8853 10.1016/j.jmmm.2008.02.152 
504 |a Butera, A., Gómez, J., Weston, J.L., Barnard, J.A., (2005) J. Appl. Phys., 98, p. 033901. , JAPIAU 0021-8979 10.1063/1.1996829 
504 |a Valstyn, E.P., Hanton, J.P., Morrish, A.H., (1962) Phys. Rev., 128, p. 2078. , PHRVAO 0031-899X 10.1103/PhysRev.128.2078 
504 |a De Biasi, E., Ramos, C.A., Zysler, R.D., (2003) J. Magn. Magn. Mater., 262, p. 235. , JMMMDC 0304-8853 10.1016/S0304-8853(02)01496-8 
504 |a Aktas, B., (1997) Thin Solid Films, 307, p. 250. , THSFAP 0040-6090 10.1016/S0040-6090(97)00311-8 
504 |a Köseoǧlu, Y., Aktaş, B., (2004) Phys. Status Solidi C, 1, p. 3516. , 1610-1634 10.1002/pssc.200405494 
506 |2 openaire  |e Política editorial 
520 3 |a We present ferromagnetic resonance measurements of Fe 3O 4 nanoparticles which have been dispersed in an elastomeric polymer [polydimethylsiloxane (PDMS)] at two different concentrations (5% and 15% w/w), and then cured in the presence of a uniform magnetic field. With this procedure it is possible to align the particles forming unidimensional needlelike cylindrical agglomerates with a relatively high length/diameter ratio. The dynamical response of this nanostructured composite has been characterized using ferromagnetic resonance at K band (24GHz) and Q band (34 GHz). In both cases we have observed an anisotropic behavior in the resonance field when the external magnetic field is rotated from the direction of the needles to the perpendicular plane. However, the measured variation is considerably lower than the values expected for an array of perfectly homogeneous long cylinders in which the elongated shape causes a uniaxial anisotropy. Results have been analyzed using the standard Smit and Beljers formalism, considering a phenomenological shape factor, P, that accounts for the reduced anisotropy. Also an ellipticity factor in the cross section of the needles, r, and Gaussian fluctuations of the shape factor, σP, are needed to explain the observed angular variation of the linewidth. The values of these parameters are consistent with data obtained at K and Q bands, supporting the proposed model, although some differences have been found for the two studied concentrations. © 2012 American Physical Society.  |l eng 
593 |a Centro Atómico Bariloche (CNEA), Instituto Balseiro (U. N. Cuyo), 8400 Bariloche, Río Negro, Argentina 
593 |a Departamento Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanociencia y Nanotecnología, Argentina 
700 1 |a Ulvarez, N. 
700 1 |a Jorge, G. 
700 1 |a Ruiz, M.M. 
700 1 |a Mietta, J.L. 
700 1 |a Negri, R.M. 
773 0 |d 2012  |g v. 86  |k n. 14  |p Phys. Rev. B Condens. Matter Mater. Phys.  |x 10980121  |t Physical Review B - Condensed Matter and Materials Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869066410&doi=10.1103%2fPhysRevB.86.144424&partnerID=40&md5=cab23e8a10d5abac3b761286885d41b4  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevB.86.144424  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10980121_v86_n14_p_Butera  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v86_n14_p_Butera  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_10980121_v86_n14_p_Butera  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI