Cellular inactivation and antitumor efficacy of a new zinc phthalocyanine with potential use in photodynamic therapy

The aim of the present study was to evaluate the photodynamic efficacy of a novel phthalocyanine derivate 2,3,9,10,16,17,23,24-octakis[(N,N-dimethylamino) ethylsulfanyl]phthalocyaninatozinc(II) (referred here as S1) using MCF-7c3 human breast cancer cells and the LM2 adenocarcinoma subcutaneously im...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vittar, N.B.R
Otros Autores: Prucca, C.G, Strassert, C., Awruch, J., Rivarola, V.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19728caa a22018257a 4500
001 PAPER-6027
003 AR-BaUEN
005 20230518203542.0
008 140217s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-48949116924 
024 7 |2 pubmed  |a 18440266 
024 7 |2 cas  |a dimyristoylphosphatidylcholine, 13699-48-4, 18194-24-6; phthalocyanine zinc, 14320-04-8; Culture Media; Indoles; Organometallic Compounds; Solutions; Zn(II)-phthalocyanine, 14320-04-8 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJBBF 
100 1 |a Vittar, N.B.R. 
245 1 0 |a Cellular inactivation and antitumor efficacy of a new zinc phthalocyanine with potential use in photodynamic therapy 
260 |c 2008 
270 1 0 |m Rivarola, V.A.; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal Nro 3, 5800 Rio Cuarto, Cordoba, Argentina; email: vrivarola@exa.unrc.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Agarwal, M.L., Clay, M.E., Harvey, E.J., Evans, H.H., Antunez, A.R., Oleinick, N.L., Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells (1991) Cancer Research, 51, pp. 5993-5996 
504 |a Ali, S.M., Chee, S.K., Yuen, G.Y., Olivo, M., Photodynamic therapy induced Fas-mediated apoptosis in human carcinoma cells (2002) International Journal of Molecular Medicine, 9, pp. 257-270 
504 |a Allen, C.M., Langlois, R., Sharman, W.M., La Madeleine, C., Van Lier, J.E., Photodynamic properties of amphiphilic derivatives of aluminum tetrasulfophthalocyanine (2002) Photochemistry & Photobiology, 76, pp. 208-216 
504 |a Almeida, R.D., Manadas, B.J., Carvalho, A.P., Duarte, C.B., Intracellular signaling mechanisms in photodynamic therapy (2004) Biochimica et Biophysica Acta, 1704, pp. 59-86 
504 |a Alvarez, M.G., Prucca, C., Milanesio, M.E., Durantini, E.N., Rivarola, V., Photodynamic activity of a new sensitizer derived from porphyrin-C60 dyad and its biological consequences in a human carcinoma cell line (2006) International Journal of Biochemistry & Cell Biolology, 38, pp. 2092-2101 
504 |a Berg, K., Bommer, J.C., Moan, J., Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. Cellular uptake studies (1989) Cancer Letters, 44, pp. 7-15 
504 |a Berg, K., Moan, J., Lysosomes as photochemical targets (1994) International Journal of Cancer, 59, pp. 814-822 
504 |a Berg, K., Moan, J., Lysosomes and microtubules as targets for photochemotherapy of cancer (1997) Journal of Photochemistry and Photobiology, 65, pp. 403-409 
504 |a Bonneau, S., Morliere, P., Brault, D., Dynamics of interactions of photosensitizers with lipoproteins and membrane-models: correlation with cellular incorporation and subcellular distribution (2004) Biochemical Pharmacology, 68, pp. 1443-1452 
504 |a Boya, P., Andreau, K., Poncet, D., Zamzami, N., Perfettini, J.L., Metivier, D., Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion (2003) Journal of Experimental Medicine, 197, pp. 1323-1334 
504 |a Castano, A.P., Demidova, T.N., Hamblin, M.R., Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death (2005) Photodiagnosis & Photodynamic Therapy, 2, pp. 1-23 
504 |a Castano, A.P., Demidova, T.N., Hamblin, M.R., Mechanisms in photodynamic therapy: part three photosensitizer, pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction (2005) Photodiagnosis & Photodynamic Therapy, 2, pp. 91-106 
504 |a Castano, A.P., Mroz, P., Hamblin, M.R., Photodynamic therapy and anti-tumour immunity (2006) Nature Review Cancer, 6, pp. 535-545 
504 |a Castino, R., Demoz, M., Isidoro, C., Destination "lysosomes": a target organelle for tumor cell killing? (2003) Journal of Molecular Recognition, 16, pp. 337-348 
504 |a Chen, Y., Mak, N.K., Yow, C.M.N., Fung, M.C., Chiu, L.C., Leung, W.N., The binding characteristics and intracellular localization of temoporfin (mTHPC) in myeloid leukemia cells: phototoxicity and mitochondrial damage (2000) Photochemistry & Photobiology, 72, pp. 541-547 
504 |a Chiu, S.M., Oleinick, N.L., Dissociation of mitochondrial depolarization from Cytochrome c release during apoptosis induced by photodynamic therapy (2001) British Journal of Cancer, 84, pp. 1099-1106 
504 |a Cook, M.J., Chambrier, I., Cracknell, S.J., Mayes, D.A., Russell, D.A., Octa-alkyl zinc phthalocyanines: potential photosensitizers for use in the photodynamic therapy of cancer (1995) Photochemistry and Photobiology, 62 (3), pp. 542-545 
504 |a Denizot, F., Lang, R., Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability (1986) Journal of Immunological Methods, 89, pp. 271-277 
504 |a Dixon, S.C., Soriano, B.J., Lush, R.M., Borner, M.M., Figg, W.D., Apoptosis: its role in the development of malignancies and its potencial as a novel therapeutic target (1997) Annals of Pharmacotherapy, 31, pp. 76-82 
504 |a Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., Photodynamic therapy (1998) Journal of the National Cancer Institute, 90, pp. 889-905 
504 |a Ferri, K.F., Kroemer, G., Organelle-specific initiation of cell death pathways (2001) Nature Cell Biology, 3, pp. E255-E263 
504 |a Ginevra, F., Biffanti, A., Pagnan, R., Biolo, E., Reddi, E., Jori, G., Delivery of the tumor photosensitizer zinc(II)-phthalocyanine to serum proteins by different liposomes: studies in vitro and in vivo (1990) Cancer Letters, 49, pp. 59-65 
504 |a Gomes, E.R., Cruz, T., Lopes, C.F., Carvalho, A.P., Duarte, C.B., Photosensitization of lymphoblastoid cells with phthalocyanines at different saturating incubation times (1999) Cell Biology & Toxicology, 15, pp. 249-260 
504 |a Gürsoy, S., Cihan, A., Kocak, M.B., Bekaroglu, O., Synthesis of new metal-free and metal-containing phthalocyanines with tertiary or quaternary aminoethyl substituents (2001) Monatshefte für Chemie, 132, pp. 813-819 
504 |a He, X.Y., Skies, R.A., Thomsen, S., Chung, L.W., Jacques, S.L., Photodynamic therapy with Photofrin II induces programmed cell death in carcinoma cell lines (1994) Photochemistry & Photobiology, 59, pp. 468-473 
504 |a Ishikawa, N., Ohno, O., Kaizu, Y., Kobayashi, H., Localized orbital study on the electronic structures of phthalocyanine dimmers (1992) Journal of Physical Chemistry, 96, pp. 8832-8839 
504 |a Ishisaka, R., Utsumi, T., Yabuki, M., Kanno, T., Furuno, T., Inoue, M., Activation of caspase-3-like protease by digitonintreated lysosomes (1998) FEBS Letters, 435, pp. 233-236 
504 |a Jori, G., Photodynamic therapy: basic and preclinical aspects (1995) CRC handbook of organic photochemistry & photobiology, pp. 1379-1383. , Horspool W.M., and Song P.S. (Eds) 
504 |a Kessel, D., Luo, Y., Deng, Y., Chang, C.K., The role of subcellular localization in initiation of apoptosis by photodynamic therapy (1997) Photochemistry & Photobiology, 65, pp. 422-426 
504 |a Kessel, D., Luo, Y., Photodynamic therapy: a mitochondrial inducer of apoptosis (1999) Cell Death & Differentiation., 6, pp. 28-35 
504 |a Kessel, D., Caruso, J.A., Reiners Jr., J.J., Potentiation of photodynamic therapy by ursodeoxycholic acid (2000) Cancer Research, 60, pp. 6985-6988 
504 |a Kessel, D., Luo, Y., Mathieu, P., Reiners Jr., J.J., Determinants of the apoptotic response to lysosomal photodamage (2000) Photochemistry & Photobiology, 71, pp. 196-200 
504 |a Kessel, D., Graça, M., Vicente, H., Reiners Jr., J.J., Initiation of apoptosis and autophagy by photodynamic therapy (2006) Lasers Surgery Medicine, 38, pp. 482-488 
504 |a Konan, Y.N., Chevallier, J., Gurny, R., Allemann, E., Encapsulation of p-THPP into Nanoparticles: Cellular Uptake, Subcellular Localization and Effect of Serum on Photodynamic Activity (2003) Photochemistry & Photobiology, 77, pp. 638-644 
504 |a Kremer, J.M.H., Esker, M.W.J., Pathmamanoharan, C., Wiersema, P.H., Vesicles of variable diameter prepared by a modified injection method (1977) Biochemistry, 16, pp. 3932-3935 
504 |a Lam, M., Oleinick, N.L., Nieminen, A.L., Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization (2001) Journal of Biological Chemistry, 276, pp. 47379-47386 
504 |a Li, W., Yuang, X., Nordgren, G., Dalen, H., Dubowchik, G.M., Firestone, R.A., Induction of cell death by the lysosomotropic detergent MSDH (2000) FEBS Letters, 470, pp. 35-39 
504 |a Moan, J., Berg, K., Steen, H.B., Warloe, T., Madslien, K., Fluorescence and photodynamic effects of phthalocyanines and porphyrins in cells (1992) Photodynamic therapy, pp. 19-35. , Henderson B.W., and Dougherty T.J. (Eds), Marcel Dekker Inc., New York/Basel/Hong Kong 
504 |a Morgan, J., Oseroff, A.R., Mitochondria-based photodynamic anti-cancer therapy (2001) Advanced Drug Delivery Reviews, 49, pp. 71-86 
504 |a Nagata, S., Obana, A., Gohto, Y., Nakajima, S., Necrotic and apoptotic cell death of human malignant melanoma cells following photodynamic therapy using an amphiphilic photosensitizer ATX-S10(Na) (2003) Lasers Surgery Medicine, 33, pp. 64-70 
504 |a Neuzil, J., Svensson, I., Weber, T., Weber, C., Brunk, U., Alpha-tocopheryl succinate-induced apoptosis in Jurkat T cells involves caspase-3 activation, and both lysosomal and mitochondrial destabilization (1999) FEBS Letters, 445, pp. 295-300 
504 |a Oda, K., Ogura, S., Ocurra, I., Preparation of a water-soluble fluorinated zinc phthalocyanine and its effect for photodynamic therapy (2000) Journal of Photochemistry & Photobiology B: Biology, 59, pp. 20-25 
504 |a Oleinick, N.L., Morris, R.L., Belichenko, I., Apoptosis in response to photodynamic therapy: what, where, why and how (2002) Photochemical & Photobiological Sciences, 1, pp. 1-21 
504 |a Paquette, B., Ali, H., Langlois, R., van Lier, J.E., Biological activities of phthalocyanines-VIII. Cellular distribution in V-79 Chinese hamster cells and phototoxicity of selectively sulfonated aluminum phthalocyanines (1988) Photochemistry & Photobiology, 47, pp. 215-220 
504 |a Plaetzer, K., Kiesslich, T., Krammer, B., Hammerl, P., Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT (2002) Photochemical & Photobiological Sciences, 1, pp. 172-177 
504 |a Reiners Jr., J.J., Caruso, J.A., Mathieu, P., Chelladurai, B., Yin, X.-M., Kessel, D., Release of Cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage (2002) Cell Death & Differentiation, 9, pp. 934-944 
504 |a Roberg, K., Johansson, U., Ollinger, K., Lysosomal release of cathepsin D precedes relocation of Cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress (1999) Free Radicals Biology Medicine, 27, pp. 1228-1237 
504 |a Rodal, G.H., Rodal, S.K., Moan, J., Berg, K., Liposome-bound Zn (II)-phthalocyanine. Mechanisms for cellular uptake and photosensitization (1998) Journal of Photochemistry & Photobiology, B: Biology, 45, pp. 150-159 
504 |a Röder, B., Hackbarth, S., Korth, O., Zimmermann, C., Herter, R., Hanke, T., Photophysical properties of pheophorbide a in different carrier-systems (1996) Proc. SPIE The International Society for Optical Engineering, 2625, pp. 179-186 
504 |a Röder, B., Hanke, T., Oelckers, S., Hackbarth, S., Symietz, C., Photophysical properties of pheophorbide a in solution and in model membrane systems (2000) Journal of Porphyrins & Phthalocyanines, 4, pp. 37-44 
504 |a Samali, A., Gorman, A.M., Cotter, T.G., Apoptosis: the story so far (1996) Experimentia, 52, pp. 933-941 
504 |a Schastak, S., Jean, B., Handzel, R., Kostenich, G., Hermann, R., Sack, U., Improved pharmacokinetics, biodistribution and necrosis in vivo using a new near infra-red photosensitizer: tetrahydroporphyrin tetratosylat (2005) Journal of Photochemistry & Photobiology, 78, pp. 203-213 
504 |a Strassert, C. A. (2006). Thesis. University of Buenos Aires. Facultad de Farmacia y Bioquimica, p. 95 [unpublished results]Theodossiou, T.A., Noronha-Dutra, A., Hothersall, J.S., Mitochondria are a primary target of hypericin phototoxicity: Synergy of intracellular calcium mobilisation in cell killing (2006) International Journal of Biochemistry & Cell Biology, 38, pp. 1946-1956 
504 |a Trivedi, N.S., Wang, H.W., Nieminen, A.L., Oleinick, N.L., Izatt, J.A., Quantitative analysis of Pc 4 localization in mouse lymphoma (LY-R) cells via double-label confocal fluorescence microscopy (2000) Photochemistry & Photobiology, 71, pp. 634-639 
504 |a Valduga, G., Bianco, G., Csik, G., Reddi, E., Masiero, L., Garbisa, S., Interaction of hydro- lipophilic phthalocyanines with cells of different metastatic potential (1996) Biochemical Pharmalology, 51, pp. 585-590 
504 |a Visona, A., Angelini, A., Gobbo, S., Bonanome, A., Thiene, G., Pagnan, A., Local photodynamic therapy with Zn(II)-phthalocyanine in an experimental model of intimal hyperplasia (2000) Journal of Photochemistry & Photobiology B: Biology, 57, pp. 94-101 
504 |a Whitacre, C.M., Feyes, D.K., Satoh, T., Grossmann, J., Mulvihill, J.W., Mukhtar, H., Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 of SW480 human colon cancer xenografts in athymic mice (2000) Clinical Cancer Research, 6, pp. 2021-2027 
504 |a Wilson, B.C., Olivo, M., Singh, G., Subcellular localization of Photofrin and aminolevulinic acid and photodynamic crossresistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to Photofrin-mediated photodynamic therapy (1997) Photochemistry & Photobiology, 65, pp. 166-176 
504 |a Wohrle, D., Wendt, A., Weitemeyer, A., Stark, J., Spiller, W., Muller, S., Metal chelates of porphyrin derivatives as sensitizers in photooxidation processes of sulfur compounds and in photodynamic therapy of cancer (1994) Russian Chemical Bulletin, 43, pp. 1953-1964 
504 |a Woodburn, K.W., Fan, Q., Miles, D.R., Kessel, D., Luo, Y., Young, S.W., Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model (1997) Photochemistry & Photobiology, 65, pp. 410-415 
520 3 |a The aim of the present study was to evaluate the photodynamic efficacy of a novel phthalocyanine derivate 2,3,9,10,16,17,23,24-octakis[(N,N-dimethylamino) ethylsulfanyl]phthalocyaninatozinc(II) (referred here as S1) using MCF-7c3 human breast cancer cells and the LM2 adenocarcinoma subcutaneously implanted in Balb/c mice as experimental models. The S1-l-α-dimyristoyl-phosphatidylcholine liposome was selected as the best delivery system because it showed greater internalization into cells (35 nmol/106 cells), relative to other liposomes. After 3 h incubation S1 was partially localized in lysosomes, the compartment that represented its primary photodamage site. The S1 treated cultures also revealed a degree of mitochondrial morphology alteration. Indeed, S1 leads to photokilling of the cells with different efficacies indicating that cell photoinactivation was dependent on both the phthalocyanine concentration and the light dose applied. Analyses of morphology and nuclear condensation level indicated that some of the cells exposed to photodynamic therapy were undergoing apoptosis within 8 h after treatment. To assess the in vivo effectiveness of S1, animals bearing tumors were treated with 0.2 mg/kg S1 followed 24 h later by 108 J cm-2 light at 600-800 nm and 60 mW cm-2,while other animals served as controls (no treatment, light alone, or S1 alone). All S1 treated tumors and none of the controls exhibited complete or partial responses, and these responses continued for the entire observation period of 12 days. Evaluation of tumor size showed that the treatment effectively delayed tumor growth. Light microscopy investigations of irradiated tumor specimens showed that S1 causes an early direct damage of malignant cells, largely via processes leading to random necrotic pathways. © 2008 Elsevier Ltd. All rights reserved.  |l eng 
593 |a Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal Nro 3, 5800 Rio Cuarto, Cordoba, Argentina 
593 |a Departamento de Química Orgánica, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina 
690 1 0 |a APOPTOSIS 
690 1 0 |a CANCER 
690 1 0 |a PHOTODYNAMIC THERAPY 
690 1 0 |a PHOTOSENSITIZER 
690 1 0 |a DIMYRISTOYLPHOSPHATIDYLCHOLINE 
690 1 0 |a LIPOSOME 
690 1 0 |a PHTHALOCYANINE ZINC 
690 1 0 |a ADENOCARCINOMA 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ANTINEOPLASTIC ACTIVITY 
690 1 0 |a APOPTOSIS 
690 1 0 |a ARTICLE 
690 1 0 |a BREAST CANCER 
690 1 0 |a CANCER CELL CULTURE 
690 1 0 |a CANCER INHIBITION 
690 1 0 |a CELL ACTIVATION 
690 1 0 |a CELL DAMAGE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CYTOLYSIS 
690 1 0 |a DRUG DELIVERY SYSTEM 
690 1 0 |a DRUG DISTRIBUTION 
690 1 0 |a FEMALE 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a INCUBATION TIME 
690 1 0 |a INTERNALIZATION 
690 1 0 |a LIGHT DAMAGE 
690 1 0 |a LIGHT IRRADIANCE 
690 1 0 |a LYSOSOME 
690 1 0 |a MICROSCOPY 
690 1 0 |a MITOCHONDRION 
690 1 0 |a MORPHOLOGY 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PHOTODYNAMIC THERAPY 
690 1 0 |a PHOTODYNAMICS 
690 1 0 |a TREATMENT RESPONSE 
690 1 0 |a TUMOR VOLUME 
690 1 0 |a ANIMALS 
690 1 0 |a CELL DEATH 
690 1 0 |a CELL LINE, TUMOR 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a CULTURE MEDIA 
690 1 0 |a DARKNESS 
690 1 0 |a FEMALE 
690 1 0 |a HUMANS 
690 1 0 |a INTRACELLULAR SPACE 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED BALB C 
690 1 0 |a NEOPLASMS 
690 1 0 |a ORGANOMETALLIC COMPOUNDS 
690 1 0 |a PHOTOCHEMOTHERAPY 
690 1 0 |a SOLUTIONS 
690 1 0 |a SPECTROMETRY, FLUORESCENCE 
690 1 0 |a TREATMENT OUTCOME 
690 1 0 |a XENOGRAFT MODEL ANTITUMOR ASSAYS 
690 1 0 |a ANIMALIA 
690 1 0 |a MUS 
650 1 7 |2 spines  |a NECROSIS 
650 1 7 |2 spines  |a INDOLES 
700 1 |a Prucca, C.G. 
700 1 |a Strassert, C. 
700 1 |a Awruch, J. 
700 1 |a Rivarola, V.A. 
773 0 |d 2008  |g v. 40  |h pp. 2192-2205  |k n. 10  |p Int. J. Biochem. Cell Biol.  |x 13572725  |w (AR-BaUEN)CENRE-5218  |t International Journal of Biochemistry and Cell Biology 
856 4 1 |u http://www.scopus.com/inward/record.url?eid=2-s2.0-48949116924&partnerID=40&md5=cf15dccc6befc4ea77b42a7f3e80830d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.biocel.2008.02.024  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13572725_v40_n10_p2192_Vittar  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13572725_v40_n10_p2192_Vittar  |y Registro en la Biblioteca Digital 
961 |a paper_13572725_v40_n10_p2192_Vittar  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion