Corner layer properties and intermediate asymptotics of waiting time solutions of nonlinear diffusion equations

Heat conduction by electrons in plasmas and by radiation in partially and fully ionized gases as well as other phenomena like flows in porous media, viscous-gravity currents, etc. obey nonlinear diffusion equations and are characterized by a finite propagation velocity. Under certain conditions the...

Descripción completa

Detalles Bibliográficos
Autor principal: Perazzo, Carlos Alberto
Otros Autores: Vigo, C.L.M, Gratton, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: International Information and Engineering Technology Association 2003
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06963caa a22007097a 4500
001 PAPER-4722
003 AR-BaUEN
005 20241015103526.0
008 190411s2003 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0345603484 
030 |a HETEE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Perazzo, Carlos Alberto 
245 1 0 |a Corner layer properties and intermediate asymptotics of waiting time solutions of nonlinear diffusion equations 
260 |b International Information and Engineering Technology Association  |c 2003 
270 1 0 |m Perazzo, C.A.; Universidad Favaloro, Solís 453, 1078 Buenos Aires, Argentina 
504 |a Zel'dovich, Ya.B., Raizer, Yu.P., (1966) Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, , Academic Press, New York 
504 |a Marshak, R.E., Effect of radiation on shock wave behavior (1958) Phys. Fluids, 1, pp. 24-29 
504 |a Pert, G.J., A class of similar solutions of the non-linear diffusion equation (1977) J. Phys. A, 10 (4), pp. 583-593 
504 |a Larsen, E.W., Pomraning, G.C., Asymptotic analysis of nonlinear Marshak waves (1980) SIAM J. Appl. Math., 39, pp. 201-212 
504 |a Polubarinova-Kochina, P.Y., (1962) Theory of Ground Water Movement, , Princeton Univ. Press 
504 |a Muskat, M., (1937) The Flow of Homogeneous Fluids Through Porous Media, , McGraw-Hill 
504 |a Buckmaster, J., Viscous sheets advancing over dry beds (1977) J. Fluid Mech., 81, pp. 735-756 
504 |a Mayergoyz, I.D., (1998) Nonlinear Diffusion of Electromagnetic Fields, , Academic Press, New York 
504 |a Kath, W.L., Cohen, D.S., Waiting-time behavior in a nonlinear diffusion equation (1982) Stud. Appl. Math., 67, pp. 79-105 
504 |a Lacey, A.A., Ockendon, J.R., Tayler, A.B., "Waiting-time" solutions of nonlinear diffusion equation (1982) J. Appl. Math., 42, pp. 1252-1264 
504 |a Lacey, A.A., Initial motion of the free boundary for a nonlinear diffusion equation (1983) IMA J. Appl. Math., 31, pp. 113-119 
504 |a Aronson, D.G., Caffarelli, L.A., Vázquez, J.L., Interfaces with a corner point in one-dimensional porous medium flow (1985) Comm. Pure Appl. Math., 38, pp. 375-404 
504 |a Thomas, L.P., Diez, J.A., Marino, B., Gratton, R., Gratton, J., Corrientes viscogravitatorias con frentes que esperan (1991) Anales AFA, 3, pp. 213-216 
504 |a Gratton, J., Rossello, E., Diez, J., Physical modeling of free flow: Waiting-time behavior (1992) Mon. Ac. Nac. Ciencias Exactas Fís. y Nat, 8, pp. 51-63 
504 |a Marino, B.M., Thomas, L.P., Gratton, R., Diez, J.A., Betelú, S., Gratton, J., Waiting time solutions of a nonlinear diffusion equation: Experimental study of a creeping flow near a waiting front (1996) Phys. Rev. E, 54, pp. 2628-2636 
504 |a Gratton, J., Vigo, C.L.M., Evolution of self-similarity, and other properties of waiting-time solutions of the porous medium equation: The case of viscous gravity currents (1998) European J. Appl. Math., 9, pp. 327-350 
504 |a Perazzo, C.A., Vigo, C.L.M., Gratton, J., Soluciones con tiempo de espera para flujos gaseosos isotermos en un medio poroso: II Asintótica cerca del arranque (1997) Anales AFA, 9, pp. 107-110 
504 |a Perazzo, C.A., Vigo, C.L.M., Gratton, J., Estudio numérico de soluciones con tiempo de espera de ecuaciones no lineales de difusión (1997) Anales AFA, 9, pp. 99-103 
504 |a Vázquez, J.L., The interface of one-dimensional flows in porous media (1984) Trans. Amer. Math. Soc., 285, pp. 717-737 
504 |a Barenblatt, G.I., (1979) Similarity, Self-Similarity and Inter-me-diate Asymptotics, , Consultant Bureau, New York and London 
504 |a Aronson, D.G., Caffarelli, L.A., Kamin, S., How an initially stationary interface begins to move in porous medium flow (1983) SIAM J. Math. Anal., 14, pp. 639-658 
504 |a Barenblatt, G.I., Zel'dovich, Ya.B., Self-similar solutions as intermediate asymptotics (1972) Ann. Rev. Fluid Mech., 4, pp. 295-312 
504 |a Gratton, J., Minotti, F., Self-similar viscous gravity currents: Phase plane formalism (1990) J. Fluid Mech., 210, pp. 155-182 
506 |2 openaire  |e Política editorial 
520 3 |a Heat conduction by electrons in plasmas and by radiation in partially and fully ionized gases as well as other phenomena like flows in porous media, viscous-gravity currents, etc. obey nonlinear diffusion equations and are characterized by a finite propagation velocity. Under certain conditions the waiting-time phenomenon occurs, consisting of a lapse in which the front of the thermal wave sits motionless, while its profile changes and a moving corner layer (a small region where the temperature gradient varies rapidly) develops. Previously we solved numerically the nonlinear diffusion equation for power law initial profiles and investigated the dependence of the waiting time on the initial conditions and the nonlinearity parameter. Here we analyze the evolution and motion of the corner layer. We find that the corner layer velocity on arriving at the front coincides with the front velocity at start-up. We investigate the intermediate asymptotics close to the front and near start-up. We detect two self-similar regimes. The first one is a constant velocity traveling wave that appears in a domain close to the corner layer. The second is a different type of self-similarity and occurs behind the corner layer but a little farther from it than the first regime.  |l eng 
593 |a Universidad Favaloro, Solís 453, 1078 Buenos Aires, Argentina 
593 |a INFIP-CONICET, FCEN, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a ASYMPTOTIC STABILITY 
690 1 0 |a IONIZATION OF GASES 
690 1 0 |a NONLINEAR EQUATIONS 
690 1 0 |a NUMERICAL METHODS 
690 1 0 |a POROUS MATERIALS 
690 1 0 |a PROBLEM SOLVING 
690 1 0 |a THERMAL GRADIENTS 
690 1 0 |a FINITE PROPAGATION VELOCITY 
690 1 0 |a NONLINEAR DIFFUSION EQUATIONS 
690 1 0 |a THERMAL WAVE 
690 1 0 |a HEAT CONDUCTION 
700 1 |a Vigo, C.L.M. 
700 1 |a Gratton, J. 
773 0 |d International Information and Engineering Technology Association, 2003  |g v. 21  |h pp. 121-127  |k n. 1  |p Int. J. Heat Technol.  |x 03928764  |t International Journal of Heat and Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0345603484&partnerID=40&md5=9d6b72c7de00d0518f16e0d211985bfe  |x registro  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03928764_v21_n1_p121_Perazzo  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03928764_v21_n1_p121_Perazzo  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_03928764_v21_n1_p121_Perazzo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion