Expression and biochemical characterisation of recombinant AceA, a bacterial α-mannosyltransferase

Biosynthesis of repeat-unit polysaccharides and N-linked glycans proceeds by sequential transfer of sugars from the appropriate sugar donor to an activated lipid carrier. The transfer of each sugar is catalysed by a specific glycosyltransferase. The molecular basis of the specificity of sugar additi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Geremia, R.A
Otros Autores: Roux, M., Ferreiro, D.U, Dauphin-Dubois, R., Lellouch, A.C, Ielpi, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1999
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13722caa a22013217a 4500
001 PAPER-2591
003 AR-BaUEN
005 20230518203201.0
008 190411s1999 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0032788714 
024 7 |2 cas  |a DNA, Recombinant; Mannosyltransferases, EC 2.4.1.- 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MGGEA 
100 1 |a Geremia, R.A. 
245 1 0 |a Expression and biochemical characterisation of recombinant AceA, a bacterial α-mannosyltransferase 
260 |c 1999 
270 1 0 |m Geremia, R.A.; Ctr. Rech. Macromol. Veg. (CNRS), Universite Joseph Fourier, BP 53X, F-38041 Grenoble Cedex 9, France; email: geremia@cermav.cnrs.fr 
506 |2 openaire  |e Política editorial 
504 |a Becker, A., Katzen, F., Pühler, A., Ielpi, L., Xanthan gum biosynthesis and application: A biochemical/genetic perspective (1998) Appl Microbiol Biotechnol, 50, pp. 145-152 
504 |a Breton, C., Bettler, E., Joziasse, D.H., Geremia, R.A., Imberty, A., Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases (1998) J Biochem (Tokyo), 123, pp. 1000-1009 
504 |a Busch, C., Hofmann, F., Selzer, J., Munro, S., Jeckel, D., Aktories, K., A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins (1998) J Biol Chem, 273, pp. 19566-19572 
504 |a Couso, R.L., Ielpi, L., Garcia, R.C., Dankert, M.A., Biosynthesis of polysaccharides in Acetobacter xylinum. Sequential synthesis of a heptasaccharide diphosphate prenol (1982) Eur J Biochem, 123, pp. 617-627 
504 |a Couso, R.L., Ielpi, L., Dankert, M.A., A xanthan gum-like poysaccharide from Acetobacter xylinum (1987) J Gen Microbiol, 133, pp. 2123-2136 
504 |a Cserzo, M., Wallin, E., Simon, I., Von Heijne, G., Elofsson, A., Prediction of transmembrane alpha-helices in prokaryotic mebrane proteins: The dense alignment surface method (1997) Protein Eng, 10, pp. 673-676 
504 |a Geremia, R.A., Mergaert, P., Geelen, D., Van Montagu, M., Holsters, M., The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase (1994) Proc Natl Acad Sci USA, 91, pp. 2669-2673 
504 |a Geremia, R.A., Petroni, E.A., Ielpi, L., Henrissat, B., Towards a classification of glycosyltransferases based on amino acid sequence similarities: Prokaryotic alpha-mannosyltransferases (1996) Biochem J, 318, pp. 133-138 
504 |a Gilbert, M., Watson, D.C., Cunningham, A.M., Jennings, M.P., Young, N.M., Wakarchuk, W.W., Cloning of the lipooligosaccharide alpha-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae (1996) J Biol Chem, pp. 28271-28276 
504 |a Griffin, A.M., Morris, V.J., Gasson, M.J., Genetic analysis of the acetan biosynthetic pathway in Acetobacter xylinum: Nucleotide sequence analysis of the aceB, aceC, aceD and aceE genes (1996) DNA Seq, 6, pp. 275-284 
504 |a Griffin, A.M., Morris, V.J., Gasson, M.J., Identification, cloning and sequencing of the aceA gene involved in acetan biosynthesis in Acetobacter xylinum (1996) FEMS Microbiol Lett, 137, pp. 115-121 
504 |a Griffin, A.M., Poelwijk, E.S., Morris, V.J., Gasson, M.J., Cloning of the aceF gene encoding the phosphomannose isomerase and GDP-mannose pyrophosphorylase activities involved in acetan biosynthesis in Acetobacter xylinum (1997) FEMS Microbiol Lett, 154, pp. 389-396 
504 |a Heinrichs, D.E., Yethon, J.A., Whitfield, C., Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica (1998) Mol Microbiol, 30, pp. 221-232 
504 |a Ielpi, L., Couso, R.O., Dankert, M.A., Lipid-linked intermediates in the biosynthesis of xanthan gum (1981) FEBS Lett, 30, pp. 253-256 
504 |a Ielpi, L., Couso, R.O., Dankert, M.A., Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris (1993) J Bacteriol, 175, pp. 2490-2500 
504 |a Jansson, P.E., Kenne, L., Lindberg, B., Structure of extracellular polysaccharide from Xanthomonas campestris (1975) Carbohydr Res, 45, pp. 275-282 
504 |a Jansson, P.E., Lindberg, J., Wimalasiri, K.M., Dankert, M.A., Structural studies of acetan, an exopolysaccharide elaborated by Acetobacter xylinum (1993) Carbohydr Res, 245, pp. 303-310 
504 |a Kadrmas, J.L., Raetz, C.R., Enzymatic synthesis and lipopolysaccharide in Escherichia coli. Purification and properties of heptosyltransferase I (1998) J Biol Chem, 273, pp. 2799-2807 
504 |a Kadrmas, J.L., Allaway, D., Studholme, R.E., Sullivan, J.T., Ronson, C.W., Poole, P.S., Raetz, C.R., Cloning and overexpression of glycosyltransferases that generate the lipopolysaccharide core of Rhizobium leguminosarum (1998) J Biol Chem, 273, pp. 26432-26440 
504 |a Katzen, P., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Pühler, A., Ielpi, L., Xanthomonas campestris pv. campestris gum mutants: Effects on xanthan biosynthesis and plant virulence (1998) J Bacteriol, 180, pp. 1607-1617 
504 |a Kolkman, M.A., Wakarchuk, W., Nuitjen, P.J., Van der Zeijst, B.A., Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: Molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit (1997) Mol Microbiol, 26, pp. 197-208 
504 |a Leigh, J.A., Walker, G.C., Exopolysaccharides of Rhizobium: Synthesis, regulation and symbiotic function (1994) Trends Genet, 10, pp. 63-67 
504 |a Lellouch, A.C., Geremia, R.A., Expression and study of recombinant ExoM, a β-1,4 glucosyl transferase involved in succinoglycan biosynthesis in Rhizobium meliloti (1999) J Bacteriol, 181, pp. 1141-1148 
504 |a Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A., Reeves, P.R., Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: Identification and characterization of tranferase genes of groups B, C2 and E1 (1993) J Bacteriol, 175, pp. 3408-3413 
504 |a Matsudaira, P., Sequence from picomol quantities of proteins electroblotted onto polyvinylidene difluoride membranes (1987) J Biol Chem, 262, pp. 10035-10038 
504 |a Petroni, E.A., Ielpi, L., Isolation and nucleotide sequence of the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha mannosyltransferase gene from Acetobacter xylinum (1996) J Bacteriol, 178, pp. 4814-4821 
504 |a Reuber, T.L., Walker, G.C., Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti (1993) Cell, 74, pp. 269-280 
504 |a Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual (2nd Edn.), , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y 
504 |a Schnaitman, C.A., Klena, J.D., Genetics of lipopolysaccharide biosynthesis in enteric bacteria (1993) Microbiol Rev, 57, pp. 655-682 
504 |a Semino, C.E., Dankert, M.A., In vitro biosynthesis of acetan using electroporated Acetobacter xylinum cells as enzyme preparations (1993) J Gen Microbiol, 139, pp. 2745-2756 
504 |a Studier, F.W., Rosenberg, A.H., Dunn, J.J., Dubendorff, J.W., Use of T7 RNA polymerase to direct expression of cloned genes (1990) Methods Enzymol, 185, pp. 60-89 
504 |a Sutherland, I.W., Novel and established applications of microbial polysaccharides (1998) Trends Biotechnol, 16, pp. 41-46 
504 |a Van Kranenburg, R., Van Swam, I.I., Marugg, J.D., Kleerebezem, M., De Vos, W.M., Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: Functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone (1999) J Bacteriol, 181, pp. 338-340 
504 |a Van Rhijn, P., Vanderleyden, J., The Rhizobium-plant symbiosis (1995) Microbiol Rev, 59, pp. 124-142 
504 |a Vrielink, A., Ruger, W., Driessen, H.P., Freemont, P.S., Crystal structure of the DNA-modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose (1994) EMBO J, 13, pp. 3413-3422 
504 |a Wakarchuk, W., Martin, A., Jennings, M.P., Moxon, E.R., Richards, J.C., Functional relationships of the genetic locus encoding the glycosyltransferase enzymes involved in the expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis (1996) J Biol Chem, 271, pp. 19166-19173 
504 |a Wakarchuk, W.W., Cunningham, A., Watson, D.C., Young, N.M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis (1998) Protein Eng, 11, pp. 295-302 
504 |a Watson, D.A., Musher, D.M., Interruption of capsule production in Streptococcus pneumoniae serotype 3 by insertion of transposon Tn916 (1990) Infect Immun, 58, pp. 3135-3138 
504 |a Whitfield, C., Valvano, M.A., Biosynthesis and expression of cell surface polysaccharides in gram-negative bacteria (1993) Adv Microbiol Physiol, 35, pp. 135-246 
504 |a Wiggins, C.A., Munro, S., Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases (1998) Proc Natl Acad Sci USA, 95, pp. 7945-7950 
520 3 |a Biosynthesis of repeat-unit polysaccharides and N-linked glycans proceeds by sequential transfer of sugars from the appropriate sugar donor to an activated lipid carrier. The transfer of each sugar is catalysed by a specific glycosyltransferase. The molecular basis of the specificity of sugar addition is not yet well understood, mainly because of the difficulty of isolating these proteins. In this study, the aceA gene product expressed by Acetobacter xylinum, which is involved in the biosynthesis of the exopolysaccharide acetan, was overproduced in Escherichia coli and its function was characterised. The aceA ORF was subcloned into the expression vector pET29 in frame with the S·tag epitope. The recombinant protein was identified, and culture conditions were optimised for production of the soluble protein. The results of test reactions showed that AceA is able to transfer one α-mannose residue from GDP-mannose to cellobiose-P-P-lipid to produce α-mannose-cellobiose-P-P-lipid. AceA was not able to use free cellobiose as a substrate, indicating that the pyrophosphate-lipid moiety is needed for enzymatic activity.  |l eng 
536 |a Detalles de la financiación: UBA TY03, 01-00014-00269 
536 |a Detalles de la financiación: PIP4461 
536 |a Detalles de la financiación: Acknowledgements Jean Gagnon, Institut de Biologie Structurale (Grenoble, France) for protein sequencing, Valerie Chazalet and Catherine Gautier (CERMAV) for their expert technical assistance, and H. Driguez (CERMAV) for critical reading of the manuscript. The France-Argentina collaboration was funded by the ECOS program PA97B28. Work at the Buenos Aires laboratory was supported by grants from CONICET PIP4461, ANPCyT 01-00014-00269, and UBA TY03 (to LI). 
593 |a Ctr. Rech. sur les Macromolec. Veg., CNRS, Université Joseph Fourier, BP 53X, F-38041 Grenoble Cedex 9, France 
593 |a Inst. Invest. Bioquim. Fund. C., Fac. de Ciencias Exactas y Naturales, Consejo Nac. de Invest. Cie./Tec., Avda. Patricias Argentinas 451, 1045 Buenos Aires, Argentina 
690 1 0 |a ACETAN 
690 1 0 |a ACETOBACTER XYLINUM 
690 1 0 |a BACTERIAL POLYSACCHARIDE 
690 1 0 |a BIOSYNTHESIS 
690 1 0 |a GLYCOSYLTRANSFERASE 
690 1 0 |a BACTERIAL ENZYME 
690 1 0 |a CELLOBIOSE 
690 1 0 |a GUANOSINE DIPHOSPHATE MANNOSE 
690 1 0 |a MANNOSE 
690 1 0 |a MANNOSYLTRANSFERASE 
690 1 0 |a RECOMBINANT ENZYME 
690 1 0 |a ACETOBACTER 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a EXPRESSION VECTOR 
690 1 0 |a GENE OVEREXPRESSION 
690 1 0 |a MOLECULAR CLONING 
690 1 0 |a NONHUMAN 
690 1 0 |a OPEN READING FRAME 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a STRUCTURE ACTIVITY RELATION 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a BASE SEQUENCE 
690 1 0 |a CARBOHYDRATE SEQUENCE 
690 1 0 |a CLONING, MOLECULAR 
690 1 0 |a DNA, RECOMBINANT 
690 1 0 |a MANNOSYLTRANSFERASES 
690 1 0 |a MUTAGENESIS, SITE-DIRECTED 
690 1 0 |a OPEN READING FRAMES 
690 1 0 |a SUBSTRATE SPECIFICITY 
690 1 0 |a ACETOBACTER 
690 1 0 |a BACTERIA (MICROORGANISMS) 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a GLUCONACETOBACTER XYLINUS 
700 1 |a Roux, M. 
700 1 |a Ferreiro, D.U. 
700 1 |a Dauphin-Dubois, R. 
700 1 |a Lellouch, A.C. 
700 1 |a Ielpi, L. 
773 0 |d 1999  |g v. 261  |h pp. 933-940  |k n. 6  |p Mol. Gen. Genet.  |x 00268925  |w (AR-BaUEN)CENRE-3025  |t Molecular and General Genetics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032788714&doi=10.1007%2fs004380051040&partnerID=40&md5=36414d4e532d6e8c0ddb73fdf27e0ae6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s004380051040  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00268925_v261_n6_p933_Geremia  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00268925_v261_n6_p933_Geremia  |y Registro en la Biblioteca Digital 
961 |a paper_00268925_v261_n6_p933_Geremia  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 63544