Photoelectron holography of atomic targets

We study the spatial interference effects appearing during the ionization of atoms (H, He, Ne, and Ar) by few-cycle laser pulses using single-electron ab initio calculations. The spatial interference is the result of the coherent superposition of the electronic wave packets created during one half c...

Descripción completa

Detalles Bibliográficos
Autor principal: Borbély, S.
Otros Autores: Tóth, A., Arbó, Diego Gabriel, Tokési, K., Nagy, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Physical Society 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09585caa a22011417a 4500
001 PAPER-25763
003 AR-BaUEN
005 20240930121104.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85060141185 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Borbély, S. 
245 1 0 |a Photoelectron holography of atomic targets 
260 |b American Physical Society  |c 2019 
504 |a Keldysh, L.V., (1964) Zh. Eksp. Teor. Fiz., 47, p. 1945 
504 |a Keldysh, L.V., (1965) Sov. Phys. JETP, 20, p. 1307 
504 |a Bian, X.-B., Huismans, Y., Smirnova, O., Yuan, K.-J., Vrakking, M.J.J., Bandrauk, A.D., (2011) Phys. Rev. A, 84, p. 043420 
504 |a Lindner, F., Schätzel, M.G., Walther, H., Baltuška, A., Goulielmakis, E., Krausz, F., Milošević, D.B., Paulus, G.G., (2005) Phys. Rev. Lett., 95, p. 040401 
504 |a Gopal, R., Simeonidis, K., Moshammer, R., Ergler, T., Dürr, M., Kurka, M., Kühnel, K.-U., Kling, M.F., (2009) Phys. Rev. Lett., 103, p. 053001 
504 |a Arbó, D.G., Persson, E., Burgdörfer, J., (2006) Phys. Rev. A, 74, p. 063407 
504 |a Arbó, D.G., Ishikawa, K.L., Schiessl, K., Persson, E., Burgdörfer, J., (2010) Phys. Rev. A, 81, p. 021403 
504 |a Arbó, D.G., Ishikawa, K.L., Schiessl, K., Persson, E., Burgdörfer, J., (2010) Phys. Rev. A, 82, p. 043426 
504 |a Arbó, D.G., Ishikawa, K.L., Persson, E., Burgdörfer, J., (2012) Nucl. Instrum. Methods Phys. Res. Sect. B, 279, p. 24 
504 |a Marchenko, T., Huismans, Y., Schafer, K.J., Vrakking, M.J.J., (2011) Phys. Rev. A, 84, p. 053427 
504 |a Huismans, Y., (2011) Science, 331, p. 61 
504 |a Huismans, Y., Gijsbertsen, A., Smolkowska, A.S., Jungmann, J.H., Rouzée, A., Logman, P.S.W.M., Lépine, F., Vrakking, M.J.J., (2012) Phys. Rev. Lett., 109, p. 013002 
504 |a Hickstein, D.D., Ranitovic, P., Witte, S., Tong, X.-M., Huismans, Y., Arpin, P., Zhou, X., Kapteyn, H.C., (2012) Phys. Rev. Lett., 109, p. 073004 
504 |a Borbély, S., Tóth, A., Tokési, K., Nagy, L., (2013) Phys. Rev. A, 87, p. 013405 
504 |a Porat, G., Alon, G., Rozen, S., Pedatzur, O., Krüger, M., Azoury, D., Natan, A., Dudovich, N., (2018) Nat. Commun., 9, p. 2805 
504 |a Agueny, H., Hansen, J.P., (2018) Phys. Rev. A, 98, p. 023414 
504 |a Okunishi, M., Morishita, T., Prümper, G., Shimada, K., Lin, C.D., Watanabe, S., Ueda, K., (2008) Phys. Rev. Lett., 100, p. 143001 
504 |a Micheau, S., Chen, Z., Le, A.T., Rauschenberger, J., Kling, M.F., Lin, C.D., (2009) Phys. Rev. Lett., 102, p. 073001 
504 |a Xu, J., Chen, Z., Le, A.-T., Lin, C.D., (2010) Phys. Rev. A, 82, p. 033403 
504 |a Lin, C.D., Le, A.-T., Chen, Z., Morishita, T., Lucchese, R., (2010) J. Phys. B, 43, p. 122001 
504 |a Blaga, C.I., Xu, J., Dichiara, A.D., Sistrunk, E., Zhang, K., Agostini, P., Miller, T.A., Lin, C.D., (2012) Nature (London), 483, p. 194 
504 |a Meckel, M., Comtois, D., Zeidler, D., Staudte, A., Pavicic, D., Bandulet, H.C., Pepin, H., Corkum, P.B., (2008) Science, 320, p. 1478 
504 |a Bian, X.-B., Bandrauk, A.D., (2012) Phys. Rev. Lett., 108, p. 263003 
504 |a Meckel, M., Staudte, A., Patchkovskii, S., Villeneuve, D.M., Corkum, P.B., Doerner, R., Spanner, M., (2014) Nat. Phys., 10, p. 594 
504 |a Borbély, S., Tóth, A., Tokési, K., Nagy, L., (2013) Phys. Scr., T156, p. 014066 
504 |a Tóth, A., Borbély, S., Tokési, K., Nagy, L., (2014) Eur. Phys. J. D, 68, p. 339 
504 |a Tong, X.M., Lin, C.D., (2005) J. Phys. B, 38, p. 2593 
504 |a Schneider, B.I., Collins, L.A., (2005) J. Non-Cryst. Solids, 351, p. 1551 
504 |a Feist, J., Nagele, S., Pazourek, R., Persson, E., Schneider, B.I., Collins, L.A., Burgdörfer, J., (2008) Phys. Rev. A, 77, p. 043420 
504 |a Borbély, S., Feist, J., Tokési, K., Nagele, S., Nagy, L., Burgdörfer, J., (2014) Phys. Rev. A, 90, p. 052706 
504 |a Park, T.J., Light, J.C., (1986) J. Chem. Phys., 85, p. 5870 
504 |a Schneider, B.I., Feist, J., Nagele, S., Pazourek, R., Hu, S., Collins, L.A., Burgdörfer, J., (2011) Quantum Dynamic Imaging, , edited by A. D. Bandrauk and M. Ivanov, CRM Series in Mathematical Physics (Springer, New York) 
504 |a Noumerov, B.V., (1924) Mon. Not. R. Astron. Soc., 84, p. 592 
504 |a Faisal, F.H.M., (1973) J. Phys. B, 6, p. L89 
504 |a Reiss, H.R., (1980) Phys. Rev. A, 22, p. 1786 
504 |a Faisal, F.H.M., Schlegel, G., (2005) J. Phys. B, 38, p. L223 
504 |a Dewangan, D., Eichler, J., (1994) Phys. Rep., 247, p. 59 
504 |a Arbó, D.G., Miraglia, J.E., Gravielle, M.S., Schiessl, K., Persson, E., Burgdörfer, J., (2008) Phys. Rev. A, 77, p. 013401 
504 |a Volkov, D.M., (1935) Z. Phys., 94, p. 250 
504 |a Arbó, D.G., Yoshida, S., Persson, E., Dimitriou, K.I., Burgdörfer, J., (2006) Phys. Rev. Lett., 96, p. 143003 
504 |a Jain, M., Tzoar, N., (1978) Phys. Rev. A, 18, p. 538 
504 |a Basile, S., Trombetta, F., Ferrante, G., Burlon, R., Leone, C., (1988) Phys. Rev. A, 37, p. 1050 
504 |a Milošević, D.B., Ehlotzky, F., (1998) Phys. Rev. A, 58, p. 3124 
504 |a Kamiński, J.Z., Jaroń, A., Ehlotzky, F., (1996) Phys. Rev. A, 53, p. 1756 
504 |a De Morisson Faria, C.F., Schomerus, H., Becker, W., (2002) Phys. Rev. A, 66, p. 043413 
504 |a Macri, P.A., Miraglia, J.E., Gravielle, M.S., (2003) J. Opt. Soc. Am. B, 20, p. 1801 
504 |a Rodríguez, V.D., Cormier, E., Gayet, R., (2004) Phys. Rev. A, 69, p. 053402 
504 |a Xie, X., Roither, S., Gräfe, S., Kartashov, D., Persson, E., Lemell, C., Zhang, L., Kitzler, M., (2013) New J. Phys., 15, p. 043050 
504 |a Arbó, D.G., Gravielle, M.S., Dimitriou, K.I., Tokési, K., Borbély, S., Miraglia, J.E., (2010) Eur. Phys. J. D, 59, p. 193 
506 |2 openaire  |e Política editorial 
520 3 |a We study the spatial interference effects appearing during the ionization of atoms (H, He, Ne, and Ar) by few-cycle laser pulses using single-electron ab initio calculations. The spatial interference is the result of the coherent superposition of the electronic wave packets created during one half cycle of the driving field following different spatial paths. This spatial interference pattern may be interpreted as the hologram of the target atom. With the help of a wave-function analysis (splitting) technique and approximate (strong-field and Coulomb-Volkov) calculations, we directly show that the hologram is the result of the electronic-wave-packet scattering on the parent ion. On the He target we demonstrate the usefulness of the wave-function splitting technique in the disentanglement of different interference patterns. Further, by performing calculations for the different targets, we show that the pattern of the hologram does not depend on the angular symmetry of the initial state and it is strongly influenced by the atomic species of the target: A deeper bounding potential leads to a denser pattern. © 2019 American Physical Society.  |l eng 
536 |a Detalles de la financiación: Office of Research, Innovation and Economic Development, California State Polytechnic University, Pomona 
536 |a Detalles de la financiación: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal 
536 |a Detalles de la financiación: D.G.A. acknowledges Grant No. PICT-2016-2096 of ANPCyT (Argentina). K.T. and L.N. acknowledge support from the National Research, Development and Innovation Office (NKFIH) Grant No. KH 126886. The numerical calculations were performed using the high performance computing resources of Babeş-Bolyai University. 
593 |a Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, 400084, Romania 
593 |a ELI-ALPS, ELI-HU Nonprofit Ltd., Dugonics tér 13, Szeged, H-6720, Hungary 
593 |a Institute for Astronomy and Space Physics IAFE (CONICET-UBA), Buenos Aires, 1428, Argentina 
593 |a Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, Debrecen, H-4001, Hungary 
690 1 0 |a ARGON LASERS 
690 1 0 |a ATOM LASERS 
690 1 0 |a ATOMS 
690 1 0 |a CALCULATIONS 
690 1 0 |a WAVE FUNCTIONS 
690 1 0 |a WAVE PACKETS 
690 1 0 |a AB INITIO CALCULATIONS 
690 1 0 |a COHERENT SUPERPOSITIONS 
690 1 0 |a ELECTRONIC WAVE PACKETS 
690 1 0 |a FEW-CYCLE LASER PULSE 
690 1 0 |a INTERFERENCE PATTERNS 
690 1 0 |a PHOTOELECTRON HOLOGRAPHIES 
690 1 0 |a SPATIAL INTERFERENCE 
690 1 0 |a SPATIAL INTERFERENCE PATTERNS 
690 1 0 |a HOLOGRAMS 
700 1 |a Tóth, A. 
700 1 |a Arbó, Diego Gabriel 
700 1 |a Tokési, K. 
700 1 |a Nagy, L. 
773 0 |d American Physical Society, 2019  |g v. 99  |k n. 1  |p Phys. Rev. A  |x 24699926  |t Physical Review A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060141185&doi=10.1103%2fPhysRevA.99.013413&partnerID=40&md5=e71558dc74f7c1f1c6db10246a13ef54  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevA.99.013413  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_24699926_v99_n1_p_Borbely  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v99_n1_p_Borbely  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_24699926_v99_n1_p_Borbely  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion