Highly Ordered Mesoporous Hydroxide Thin Films through Self-Assembly of Size-Tailored Nanobuilding Blocks: A Theoretical-Experimental Approach
Mesoporous crystalline (hydr)oxides of low-valence metal ions (M(II) and M(III)) are highly demanded in the context of various applications. In this study, we demonstrate key factors to the successful formation of ordered mesoporous films through the assembly of nanobuilding block (ANBB) approach us...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 14542caa a22012017a 4500 | ||
---|---|---|---|
001 | PAPER-25752 | ||
003 | AR-BaUEN | ||
005 | 20230518205752.0 | ||
008 | 190410s2019 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85060027527 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
030 | |a CMATE | ||
100 | 1 | |a Tarutani, N. | |
245 | 1 | 0 | |a Highly Ordered Mesoporous Hydroxide Thin Films through Self-Assembly of Size-Tailored Nanobuilding Blocks: A Theoretical-Experimental Approach |
260 | |b American Chemical Society |c 2019 | ||
270 | 1 | 0 | |m Tokudome, Y.; Department of Materials Science, Graduate School of Engineering, Osaka Prefecture UniversityJapan; email: tokudome@photomater.com |
506 | |2 openaire |e Política editorial | ||
504 | |a Guo, J., Tardy, B., Christofferson, A., Dai, Y., Richardson, J., Zhu, W., Hu, M., Caruso, F., Modular Assembly of Superstructures from Polyphenol-Functionalized Building Blocks (2016) Nat. Nanotechnol., 11, pp. 1105-1111 | ||
504 | |a Armao, J., Nyrkova, I., Fuks, G., Osypenko, A., Maaloum, M., Moulin, E., Arenal, R., Giuseppone, N., Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid-Liquid Interface (2017) J. Am. Chem. Soc., 139, pp. 2345-2350 | ||
504 | |a Wang, Y., Price, A., Caruso, F., Nanoporous Colloids: Building Blocks for a New Generation of Structured Materials (2009) J. Mater. Chem., 19, pp. 6451-6464 | ||
504 | |a Ding, H., Liu, C., Gu, H., Zhao, Y., Wang, B., Gu, Z., Responsive Colloidal Crystal for Spectrometer Grating (2014) ACS Photonics, 1, pp. 121-126 | ||
504 | |a Tokudome, Y., Nakanishi, K., Kanamori, K., Fujita, K., Akamatsu, H., Hanada, T., Structural Characterization of Hierarchically Porous Alumina Aerogel and Xerogel Monoliths (2009) J. Colloid Interface Sci., 338, pp. 506-513 | ||
504 | |a Yamada, Y., Tsung, C.-K., Huang, W., Huo, Z., Habas, S., Soejima, T., Aliaga, C., Yang, P., Nanocrystal Bilayer for Tandem Catalysis (2011) Nat. Chem., 3, pp. 372-376 | ||
504 | |a Wang, Y., Jenkins, I., McGinley, J., Sinno, T., Crocker, J., Colloidal Crystals with Diamond Symmetry at Optical Lengthscales (2017) Nat. Commun., 8, p. 14173 | ||
504 | |a Xiao, X., Yu, H., Jin, H., Wu, M., Fang, Y., Sun, J., Hu, Z., Zhou, J., Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides (2017) ACS Nano, 11, pp. 2180-2186 | ||
504 | |a Li, B.W., Osada, M., Ozawa, T.C., Ebina, Y., Akatsuka, K., Ma, R., Funakubo, H., Sasaki, T., Engineered Interfaces of Artificial Perovskite Oxide Superlattices via Nanosheet Deposition Process (2010) ACS Nano, 4, pp. 6673-6680 | ||
504 | |a Wang, L., Wang, D., Dong, X.Y., Zhang, Z.J., Pei, X.F., Chen, X.J., Chena, B., Jin, J., Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors (2011) Chem. Commun., 47, pp. 3556-3558 | ||
504 | |a Sanchez, C., Boissière, C., Grosso, D., Laberty, C., Nicole, L., Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity (2008) Chem. Mater., 20, pp. 682-737 | ||
504 | |a Wong, M., Jeng, E., Ying, J., Supramolecular Templating of Thermally Stable Crystalline Mesoporous Metal Oxides Using Nanoparticulate Precursors (2001) Nano Lett., 1, pp. 637-642 | ||
504 | |a Hwang, Y., Lee, K.-C., Kwon, Y.-U., Nanoparticle Routes to Mesoporous Titania Thin Films (2001) Chem. Commun., pp. 1738-1739 | ||
504 | |a Chane-Ching, J., Cobo, F., Aubert, D., Harvey, H., Airiau, M., Corma, A., A General Method for the Synthesis of Nanostructured Large-Surface-Area Materials through the Self-Assembly of Functionalized Nanoparticles (2005) Chem. - Eur. J., 11, pp. 979-987 | ||
504 | |a Fan, K., Chen, H., Ji, Y., Huang, H., Claesson, P., Daniel, Q., Philippe, B., Sun, L., Nickel-Vanadium Monolayer Double Hydroxide for Efficient Electrochemical Water Oxidation (2016) Nat. Commun., 7, p. 11981 | ||
504 | |a Nguyen, T., Boudard, M., Carmezim, J., Montemor, F., Ni x Co 1-x (OH) 2 Nanosheets on Carbon Nanofoam Paper as High Areal Capacity Electrodes for Hybrid Supercapacitors (2017) Energy, 126, pp. 208-216 | ||
504 | |a Lee, A.F., Bennett, J.A., Manayil, J.C., Wilson, K., Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification (2014) Chem. Soc. Rev., 43, pp. 7887-7916 | ||
504 | |a Yu, X.-Y., Luo, T., Jia, Y., Xu, R.-X., Gao, C., Zhang, Y.-X., Liu, J.-H., Huang, X.-J., Three-Dimensional Hierarchical Flower-like Mg-Al-Layered Double Hydroxides: Highly Efficient Adsorbents for As(v) and Cr(vi) Removal (2012) Nanoscale, 4, pp. 3466-3474 | ||
504 | |a Tarutani, N., Tokudome, Y., Jobbágy, M., Viva, F., Soler-Illia, G., Takahashi, M., Single-Nanometer-Sized Low-Valence Metal Hydroxide Crystals: Synthesis via Epoxide-Mediated Alkalinization and Assembly toward Functional Mesoporous Materials (2016) Chem. Mater., 28, pp. 5606-5610 | ||
504 | |a Bollmann, L., Urade, V.N., Hillhouse, H.W., Controlling Interfacial Curvature in Nanoporous Silica Films Formed by Evaporation-Induced Self-Assembly from Nonionic Surfactants. I. Evolution of Nanoscale Structures in Coating Solutions (2007) Langmuir, 23, pp. 4257-4267 | ||
504 | |a Urade, V.N., Bollmann, L., Kowalski, J.D., Tate, M.P., Hillhouse, H.W., Controlling Interfacial Curvature in Nanoporous Silica Films Formed by Evaporation-Induced Self-Assembly from Nonionic Surfactants. II. Effect of Processing Parameters on Film Structure (2007) Langmuir, 23, pp. 4268-4278 | ||
504 | |a Tang, Q., Angelomé, P.C., Soler-Illia, G.J.A.A., Müller, M., Formation of Ordered Mesostructured TiO 2 Thin Films: A Soft Coarse-Grained Simulation Study (2017) Phys. Chem. Chem. Phys., 19, pp. 28249-28262 | ||
504 | |a Gash, A., Tillotson, T., Satcher, J., Poco, J., Hrubesh, L., Simpson, R., Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts (2001) Chem. Mater., 13, pp. 999-1007 | ||
504 | |a Tokudome, Y., Tarutani, N., Nakanishi, K., Takahashi, M., Layered Double Hydroxide (LDH)-Based Monolith with Interconnected Hierarchical Channels: Enhanced Sorption Affinity for Anionic Species (2013) J. Mater. Chem. A, 1, pp. 7702-7708 | ||
504 | |a Jobbágy, M., Soler-Illia, G.J.A.A., Regazzoni, A.E., Blesa, M.A., Synthesis of Copper(II)-Containing Nickel(II) Hydroxide Particles as Precursors of Copper(II)-Substituted Nickel(II) Oxides (1998) Chem. Mater., 10, pp. 1632-1637 | ||
504 | |a Soler-Illia, G.J.A.A., Jobbágy, M., Regazzoni, A.E., Blesa, M.A., Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism (1999) Chem. Mater., 11, pp. 3140-3146 | ||
504 | |a Manceau, A., Calas, G., Decarreau, A., Nickel-Bearing Clay Minerals: I. Optical Spectroscopic Study of Nickel Crystal Chemistry (1985) Clay Miner., 20, pp. 367-387 | ||
504 | |a Poul, L., Jouini, N., Fiévet, F., Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt, and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study (2000) Chem. Mater., 12, pp. 3123-3132 | ||
504 | |a Deacon, G.B., Phillips, R.J., Relationships between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination (1980) Coord. Chem. Rev., 33, pp. 227-250 | ||
504 | |a Soler-Illia, G.J.A.A., Crepaldi, E.L., Grosso, D., Durand, D., Sanchez, C., Structural Control in Self-Standing Mesostructured Silica Oriented Membranes and Xerogels (2002) Chem. Commun., pp. 2298-2299 | ||
504 | |a Crepaldi, E.L., Soler-Illia, G.J.A.A., Grosso, D., Cagnol, F., Ribot, F., Sanchez, C., Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO 2 (2003) J. Am. Chem. Soc., 125, pp. 9770-9786 | ||
504 | |a Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M., (2012) Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, , Springer Science & Business Media: Berlin, Heidelberg, Chapter 4 | ||
504 | |a Hamaker, H.C., The London - Van der Waals Attraction between Spherical Particles (1937) Physica, 4, pp. 1058-1072 | ||
504 | |a Müller, M., Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models (2011) J. Stat. Phys., 145, pp. 967-1016 | ||
504 | |a Xu, J., Han, Y., Cui, J., Jiang, W., Size Selective Incorporation of Gold Nanoparticles in Diblock Copolymer Vesicle Wall (2013) Langmuir, 29, pp. 10383-10392 | ||
504 | |a Szeifert, J.M., Feckl, J.M., Fattakhova-Rohlfing, D., Liu, Y., Kalousek, V., Rathousky, J., Bein, T., Ultrasmall Titania Nanocrystals and Their Direct Assembly into Mesoporous Structures Showing Fast Lithium Insertion (2010) J. Am. Chem. Soc., 132, pp. 12605-12611 | ||
504 | |a Rauda, I.E., Buonsanti, R., Saldarriaga-Lopez, L.C., Benjauthrit, K., Schelhas, L.T., Stefik, M., Augustyn, V., Tolbert, S.H., General Method for the Synthesis of Hierarchical Nanocrystal-Based Mesoporous Materials (2012) ACS Nano, 6, pp. 6386-6399 | ||
504 | |a Eckhardt, B., Ortel, E., Bernsmeier, D., Polte, J., Strasser, P., Vainio, U., Emmerling, F., Kraehnert, R., Micelle-Templated Oxides and Carbonates of Zinc, Cobalt, and Aluminum and a Generalized Strategy for Their Synthesis (2013) Chem. Mater., 25, pp. 2749-2758 | ||
504 | |a Livage, J., Henry, M., Sanchez, C., Sol-Gel Chemistry of Transition Metal Oxides (1988) Prog. Solid State Chem., 18, pp. 259-341 | ||
520 | 3 | |a Mesoporous crystalline (hydr)oxides of low-valence metal ions (M(II) and M(III)) are highly demanded in the context of various applications. In this study, we demonstrate key factors to the successful formation of ordered mesoporous films through the assembly of nanobuilding block (ANBB) approach using a colloidal solution of crystalline M(OH) 2 (M = Mn, Fe, Co, Ni, and Cu). The colloidal system of α-Ni(OH) 2 is presented in depth as a typical example. Crystal growth and aggregation kinetics of the NBB were tuned by synthetic parameters. Nanometer-sized NBBs of tailored size between oligomer scale to over 20 nm were obtained. The films prepared from α-Ni(OH) 2 NBBs with a diameter of ≤7.5 nm showed ordered mesostructures through evaporation-induced self-assembly in the presence of supramolecular templates. Coarse-grained simulations suggest that there is a threshold diameter of NBB toward the formation of well-ordered mesostructures. It was found that, as well as limiting the diameter of NBB, inhibition of an aggregation of NBBs by using coordinative additives or diluting the NBB colloidal solution was essential to control the assembly of NBBs and templates into the ordered mesostructures. The results obtained here open up the synthesis of ordered mesoporous materials with a crystalline wall of variety of chemical compositions containing low-valence metal elements. © 2018 American Chemical Society. |l eng | |
536 | |a Detalles de la financiación: SAXS1 18927 | ||
536 | |a Detalles de la financiación: Japan Society for the Promotion of Science | ||
536 | |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020130100610BA | ||
536 | |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, Mu1674/15-1 | ||
536 | |a Detalles de la financiación: Izumi Science and Technology Foundation | ||
536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2014-3687, 2015-3526 | ||
536 | |a Detalles de la financiación: Sumitomo Foundation | ||
536 | |a Detalles de la financiación: Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation from JSPS is gratefully acknowledged. The present work was partially supported by JSPS KAKENHI, JSPS bilateral program, LNLS proposal SAXS1 18927, ANPCyT (PICT 2014-3687 and 2015-3526), UBACyT (20020130100610BA), and The Sumitomo Foundation, Izumi Science and Technology Foundation and Deutsche Forschungsgemeinschaft under grant Mu1674/15-1. The simulations have been performed at the GWDG Göttingen, the HLRN Hannover/Berlin, and the von-Neumann Institute for Computing, Jülich, Germany. | ||
593 | |a Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan | ||
593 | |a INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina | ||
593 | |a Instituto de Nanosistemas, Universidad Nacional de General San Martín-CONICET, Av. 25 de Mayo y Francia, San Martín, 1650, Argentina | ||
593 | |a Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany | ||
593 | |a Department of Chemical Science and Technology, Faculty of Bioscience and Applied Chemistry, Hosei University, Koganei, Tokyo, 184-8584, Japan | ||
690 | 1 | 0 | |a ADDITIVES |
690 | 1 | 0 | |a AGGLOMERATION |
690 | 1 | 0 | |a CHROMIUM COMPOUNDS |
690 | 1 | 0 | |a CRYSTALLINE MATERIALS |
690 | 1 | 0 | |a GROWTH KINETICS |
690 | 1 | 0 | |a METAL IONS |
690 | 1 | 0 | |a METALS |
690 | 1 | 0 | |a SELF ASSEMBLY |
690 | 1 | 0 | |a SOLS |
690 | 1 | 0 | |a THIN FILMS |
690 | 1 | 0 | |a AGGREGATION KINETICS |
690 | 1 | 0 | |a CHEMICAL COMPOSITIONS |
690 | 1 | 0 | |a EVAPORATION INDUCED SELF ASSEMBLIES |
690 | 1 | 0 | |a EXPERIMENTAL APPROACHES |
690 | 1 | 0 | |a HYDROXIDE THIN FILMS |
690 | 1 | 0 | |a ORDERED MESOPOROUS MATERIALS |
690 | 1 | 0 | |a SUPRAMOLECULAR TEMPLATES |
690 | 1 | 0 | |a SYNTHETIC PARAMETERS |
690 | 1 | 0 | |a MESOPOROUS MATERIALS |
700 | 1 | |a Tokudome, Y. | |
700 | 1 | |a Jobbágy, M. | |
700 | 1 | |a Soler-Illia, G.J.A.A. | |
700 | 1 | |a Tang, Q. | |
700 | 1 | |a Müller, M. | |
700 | 1 | |a Takahashi, M. | |
773 | 0 | |d American Chemical Society, 2019 |g v. 31 |h pp. 322-330 |k n. 2 |p Chem. Mater. |x 08974756 |w (AR-BaUEN)CENRE-5532 |t Chemistry of Materials | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060027527&doi=10.1021%2facs.chemmater.8b03082&partnerID=40&md5=913817179b1fae684e252ee6e38fca86 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1021/acs.chemmater.8b03082 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_08974756_v31_n2_p322_Tarutani |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08974756_v31_n2_p322_Tarutani |y Registro en la Biblioteca Digital |
961 | |a paper_08974756_v31_n2_p322_Tarutani |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 86705 |