Highly Ordered Mesoporous Hydroxide Thin Films through Self-Assembly of Size-Tailored Nanobuilding Blocks: A Theoretical-Experimental Approach

Mesoporous crystalline (hydr)oxides of low-valence metal ions (M(II) and M(III)) are highly demanded in the context of various applications. In this study, we demonstrate key factors to the successful formation of ordered mesoporous films through the assembly of nanobuilding block (ANBB) approach us...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Tarutani, N.
Otros Autores: Tokudome, Y., Jobbágy, M., Soler-Illia, G.J.A.A, Tang, Q., Müller, M., Takahashi, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14542caa a22012017a 4500
001 PAPER-25752
003 AR-BaUEN
005 20230518205752.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85060027527 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CMATE 
100 1 |a Tarutani, N. 
245 1 0 |a Highly Ordered Mesoporous Hydroxide Thin Films through Self-Assembly of Size-Tailored Nanobuilding Blocks: A Theoretical-Experimental Approach 
260 |b American Chemical Society  |c 2019 
270 1 0 |m Tokudome, Y.; Department of Materials Science, Graduate School of Engineering, Osaka Prefecture UniversityJapan; email: tokudome@photomater.com 
506 |2 openaire  |e Política editorial 
504 |a Guo, J., Tardy, B., Christofferson, A., Dai, Y., Richardson, J., Zhu, W., Hu, M., Caruso, F., Modular Assembly of Superstructures from Polyphenol-Functionalized Building Blocks (2016) Nat. Nanotechnol., 11, pp. 1105-1111 
504 |a Armao, J., Nyrkova, I., Fuks, G., Osypenko, A., Maaloum, M., Moulin, E., Arenal, R., Giuseppone, N., Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid-Liquid Interface (2017) J. Am. Chem. Soc., 139, pp. 2345-2350 
504 |a Wang, Y., Price, A., Caruso, F., Nanoporous Colloids: Building Blocks for a New Generation of Structured Materials (2009) J. Mater. Chem., 19, pp. 6451-6464 
504 |a Ding, H., Liu, C., Gu, H., Zhao, Y., Wang, B., Gu, Z., Responsive Colloidal Crystal for Spectrometer Grating (2014) ACS Photonics, 1, pp. 121-126 
504 |a Tokudome, Y., Nakanishi, K., Kanamori, K., Fujita, K., Akamatsu, H., Hanada, T., Structural Characterization of Hierarchically Porous Alumina Aerogel and Xerogel Monoliths (2009) J. Colloid Interface Sci., 338, pp. 506-513 
504 |a Yamada, Y., Tsung, C.-K., Huang, W., Huo, Z., Habas, S., Soejima, T., Aliaga, C., Yang, P., Nanocrystal Bilayer for Tandem Catalysis (2011) Nat. Chem., 3, pp. 372-376 
504 |a Wang, Y., Jenkins, I., McGinley, J., Sinno, T., Crocker, J., Colloidal Crystals with Diamond Symmetry at Optical Lengthscales (2017) Nat. Commun., 8, p. 14173 
504 |a Xiao, X., Yu, H., Jin, H., Wu, M., Fang, Y., Sun, J., Hu, Z., Zhou, J., Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides (2017) ACS Nano, 11, pp. 2180-2186 
504 |a Li, B.W., Osada, M., Ozawa, T.C., Ebina, Y., Akatsuka, K., Ma, R., Funakubo, H., Sasaki, T., Engineered Interfaces of Artificial Perovskite Oxide Superlattices via Nanosheet Deposition Process (2010) ACS Nano, 4, pp. 6673-6680 
504 |a Wang, L., Wang, D., Dong, X.Y., Zhang, Z.J., Pei, X.F., Chen, X.J., Chena, B., Jin, J., Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors (2011) Chem. Commun., 47, pp. 3556-3558 
504 |a Sanchez, C., Boissière, C., Grosso, D., Laberty, C., Nicole, L., Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity (2008) Chem. Mater., 20, pp. 682-737 
504 |a Wong, M., Jeng, E., Ying, J., Supramolecular Templating of Thermally Stable Crystalline Mesoporous Metal Oxides Using Nanoparticulate Precursors (2001) Nano Lett., 1, pp. 637-642 
504 |a Hwang, Y., Lee, K.-C., Kwon, Y.-U., Nanoparticle Routes to Mesoporous Titania Thin Films (2001) Chem. Commun., pp. 1738-1739 
504 |a Chane-Ching, J., Cobo, F., Aubert, D., Harvey, H., Airiau, M., Corma, A., A General Method for the Synthesis of Nanostructured Large-Surface-Area Materials through the Self-Assembly of Functionalized Nanoparticles (2005) Chem. - Eur. J., 11, pp. 979-987 
504 |a Fan, K., Chen, H., Ji, Y., Huang, H., Claesson, P., Daniel, Q., Philippe, B., Sun, L., Nickel-Vanadium Monolayer Double Hydroxide for Efficient Electrochemical Water Oxidation (2016) Nat. Commun., 7, p. 11981 
504 |a Nguyen, T., Boudard, M., Carmezim, J., Montemor, F., Ni x Co 1-x (OH) 2 Nanosheets on Carbon Nanofoam Paper as High Areal Capacity Electrodes for Hybrid Supercapacitors (2017) Energy, 126, pp. 208-216 
504 |a Lee, A.F., Bennett, J.A., Manayil, J.C., Wilson, K., Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification (2014) Chem. Soc. Rev., 43, pp. 7887-7916 
504 |a Yu, X.-Y., Luo, T., Jia, Y., Xu, R.-X., Gao, C., Zhang, Y.-X., Liu, J.-H., Huang, X.-J., Three-Dimensional Hierarchical Flower-like Mg-Al-Layered Double Hydroxides: Highly Efficient Adsorbents for As(v) and Cr(vi) Removal (2012) Nanoscale, 4, pp. 3466-3474 
504 |a Tarutani, N., Tokudome, Y., Jobbágy, M., Viva, F., Soler-Illia, G., Takahashi, M., Single-Nanometer-Sized Low-Valence Metal Hydroxide Crystals: Synthesis via Epoxide-Mediated Alkalinization and Assembly toward Functional Mesoporous Materials (2016) Chem. Mater., 28, pp. 5606-5610 
504 |a Bollmann, L., Urade, V.N., Hillhouse, H.W., Controlling Interfacial Curvature in Nanoporous Silica Films Formed by Evaporation-Induced Self-Assembly from Nonionic Surfactants. I. Evolution of Nanoscale Structures in Coating Solutions (2007) Langmuir, 23, pp. 4257-4267 
504 |a Urade, V.N., Bollmann, L., Kowalski, J.D., Tate, M.P., Hillhouse, H.W., Controlling Interfacial Curvature in Nanoporous Silica Films Formed by Evaporation-Induced Self-Assembly from Nonionic Surfactants. II. Effect of Processing Parameters on Film Structure (2007) Langmuir, 23, pp. 4268-4278 
504 |a Tang, Q., Angelomé, P.C., Soler-Illia, G.J.A.A., Müller, M., Formation of Ordered Mesostructured TiO 2 Thin Films: A Soft Coarse-Grained Simulation Study (2017) Phys. Chem. Chem. Phys., 19, pp. 28249-28262 
504 |a Gash, A., Tillotson, T., Satcher, J., Poco, J., Hrubesh, L., Simpson, R., Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts (2001) Chem. Mater., 13, pp. 999-1007 
504 |a Tokudome, Y., Tarutani, N., Nakanishi, K., Takahashi, M., Layered Double Hydroxide (LDH)-Based Monolith with Interconnected Hierarchical Channels: Enhanced Sorption Affinity for Anionic Species (2013) J. Mater. Chem. A, 1, pp. 7702-7708 
504 |a Jobbágy, M., Soler-Illia, G.J.A.A., Regazzoni, A.E., Blesa, M.A., Synthesis of Copper(II)-Containing Nickel(II) Hydroxide Particles as Precursors of Copper(II)-Substituted Nickel(II) Oxides (1998) Chem. Mater., 10, pp. 1632-1637 
504 |a Soler-Illia, G.J.A.A., Jobbágy, M., Regazzoni, A.E., Blesa, M.A., Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism (1999) Chem. Mater., 11, pp. 3140-3146 
504 |a Manceau, A., Calas, G., Decarreau, A., Nickel-Bearing Clay Minerals: I. Optical Spectroscopic Study of Nickel Crystal Chemistry (1985) Clay Miner., 20, pp. 367-387 
504 |a Poul, L., Jouini, N., Fiévet, F., Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt, and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study (2000) Chem. Mater., 12, pp. 3123-3132 
504 |a Deacon, G.B., Phillips, R.J., Relationships between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination (1980) Coord. Chem. Rev., 33, pp. 227-250 
504 |a Soler-Illia, G.J.A.A., Crepaldi, E.L., Grosso, D., Durand, D., Sanchez, C., Structural Control in Self-Standing Mesostructured Silica Oriented Membranes and Xerogels (2002) Chem. Commun., pp. 2298-2299 
504 |a Crepaldi, E.L., Soler-Illia, G.J.A.A., Grosso, D., Cagnol, F., Ribot, F., Sanchez, C., Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO 2 (2003) J. Am. Chem. Soc., 125, pp. 9770-9786 
504 |a Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M., (2012) Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, , Springer Science & Business Media: Berlin, Heidelberg, Chapter 4 
504 |a Hamaker, H.C., The London - Van der Waals Attraction between Spherical Particles (1937) Physica, 4, pp. 1058-1072 
504 |a Müller, M., Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models (2011) J. Stat. Phys., 145, pp. 967-1016 
504 |a Xu, J., Han, Y., Cui, J., Jiang, W., Size Selective Incorporation of Gold Nanoparticles in Diblock Copolymer Vesicle Wall (2013) Langmuir, 29, pp. 10383-10392 
504 |a Szeifert, J.M., Feckl, J.M., Fattakhova-Rohlfing, D., Liu, Y., Kalousek, V., Rathousky, J., Bein, T., Ultrasmall Titania Nanocrystals and Their Direct Assembly into Mesoporous Structures Showing Fast Lithium Insertion (2010) J. Am. Chem. Soc., 132, pp. 12605-12611 
504 |a Rauda, I.E., Buonsanti, R., Saldarriaga-Lopez, L.C., Benjauthrit, K., Schelhas, L.T., Stefik, M., Augustyn, V., Tolbert, S.H., General Method for the Synthesis of Hierarchical Nanocrystal-Based Mesoporous Materials (2012) ACS Nano, 6, pp. 6386-6399 
504 |a Eckhardt, B., Ortel, E., Bernsmeier, D., Polte, J., Strasser, P., Vainio, U., Emmerling, F., Kraehnert, R., Micelle-Templated Oxides and Carbonates of Zinc, Cobalt, and Aluminum and a Generalized Strategy for Their Synthesis (2013) Chem. Mater., 25, pp. 2749-2758 
504 |a Livage, J., Henry, M., Sanchez, C., Sol-Gel Chemistry of Transition Metal Oxides (1988) Prog. Solid State Chem., 18, pp. 259-341 
520 3 |a Mesoporous crystalline (hydr)oxides of low-valence metal ions (M(II) and M(III)) are highly demanded in the context of various applications. In this study, we demonstrate key factors to the successful formation of ordered mesoporous films through the assembly of nanobuilding block (ANBB) approach using a colloidal solution of crystalline M(OH) 2 (M = Mn, Fe, Co, Ni, and Cu). The colloidal system of α-Ni(OH) 2 is presented in depth as a typical example. Crystal growth and aggregation kinetics of the NBB were tuned by synthetic parameters. Nanometer-sized NBBs of tailored size between oligomer scale to over 20 nm were obtained. The films prepared from α-Ni(OH) 2 NBBs with a diameter of ≤7.5 nm showed ordered mesostructures through evaporation-induced self-assembly in the presence of supramolecular templates. Coarse-grained simulations suggest that there is a threshold diameter of NBB toward the formation of well-ordered mesostructures. It was found that, as well as limiting the diameter of NBB, inhibition of an aggregation of NBBs by using coordinative additives or diluting the NBB colloidal solution was essential to control the assembly of NBBs and templates into the ordered mesostructures. The results obtained here open up the synthesis of ordered mesoporous materials with a crystalline wall of variety of chemical compositions containing low-valence metal elements. © 2018 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: SAXS1 18927 
536 |a Detalles de la financiación: Japan Society for the Promotion of Science 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020130100610BA 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, Mu1674/15-1 
536 |a Detalles de la financiación: Izumi Science and Technology Foundation 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2014-3687, 2015-3526 
536 |a Detalles de la financiación: Sumitomo Foundation 
536 |a Detalles de la financiación: Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation from JSPS is gratefully acknowledged. The present work was partially supported by JSPS KAKENHI, JSPS bilateral program, LNLS proposal SAXS1 18927, ANPCyT (PICT 2014-3687 and 2015-3526), UBACyT (20020130100610BA), and The Sumitomo Foundation, Izumi Science and Technology Foundation and Deutsche Forschungsgemeinschaft under grant Mu1674/15-1. The simulations have been performed at the GWDG Göttingen, the HLRN Hannover/Berlin, and the von-Neumann Institute for Computing, Jülich, Germany. 
593 |a Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan 
593 |a INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Instituto de Nanosistemas, Universidad Nacional de General San Martín-CONICET, Av. 25 de Mayo y Francia, San Martín, 1650, Argentina 
593 |a Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany 
593 |a Department of Chemical Science and Technology, Faculty of Bioscience and Applied Chemistry, Hosei University, Koganei, Tokyo, 184-8584, Japan 
690 1 0 |a ADDITIVES 
690 1 0 |a AGGLOMERATION 
690 1 0 |a CHROMIUM COMPOUNDS 
690 1 0 |a CRYSTALLINE MATERIALS 
690 1 0 |a GROWTH KINETICS 
690 1 0 |a METAL IONS 
690 1 0 |a METALS 
690 1 0 |a SELF ASSEMBLY 
690 1 0 |a SOLS 
690 1 0 |a THIN FILMS 
690 1 0 |a AGGREGATION KINETICS 
690 1 0 |a CHEMICAL COMPOSITIONS 
690 1 0 |a EVAPORATION INDUCED SELF ASSEMBLIES 
690 1 0 |a EXPERIMENTAL APPROACHES 
690 1 0 |a HYDROXIDE THIN FILMS 
690 1 0 |a ORDERED MESOPOROUS MATERIALS 
690 1 0 |a SUPRAMOLECULAR TEMPLATES 
690 1 0 |a SYNTHETIC PARAMETERS 
690 1 0 |a MESOPOROUS MATERIALS 
700 1 |a Tokudome, Y. 
700 1 |a Jobbágy, M. 
700 1 |a Soler-Illia, G.J.A.A. 
700 1 |a Tang, Q. 
700 1 |a Müller, M. 
700 1 |a Takahashi, M. 
773 0 |d American Chemical Society, 2019  |g v. 31  |h pp. 322-330  |k n. 2  |p Chem. Mater.  |x 08974756  |w (AR-BaUEN)CENRE-5532  |t Chemistry of Materials 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060027527&doi=10.1021%2facs.chemmater.8b03082&partnerID=40&md5=913817179b1fae684e252ee6e38fca86  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.chemmater.8b03082  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08974756_v31_n2_p322_Tarutani  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08974756_v31_n2_p322_Tarutani  |y Registro en la Biblioteca Digital 
961 |a paper_08974756_v31_n2_p322_Tarutani  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86705