Effect of copper on diesel degradation in Pseudomonas extremaustralis

Environments co-contaminated with heavy metals and hydrocarbons have become an important problem worldwide, especially due to the effect of metals on hydrocarbon degrading microorganisms. Pseudomonas extremaustralis, a bacterium isolated from a pristine pond in Antarctica, showed high capabilities t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Colonnella, M.A
Otros Autores: Lizarraga, L., Rossi, L., Díaz Peña, R., Egoburo, D., López, N.I, Iustman, L.J.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Tokyo 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15038caa a22010697a 4500
001 PAPER-25751
003 AR-BaUEN
005 20230518205752.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85055573670 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EXTRF 
100 1 |a Colonnella, M.A. 
245 1 0 |a Effect of copper on diesel degradation in Pseudomonas extremaustralis 
260 |b Springer Tokyo  |c 2019 
270 1 0 |m Iustman, L.J.R.; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes, 2160, Argentina; email: lri@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Agnello, A.C., Bagard, M., van Hullebusch, E.D., Esposito, G., Huguenot, D., Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation (2016) Sci Total Environ, 563, pp. 693-703 
504 |a Arnoldi, M., Fritz, M., Bäuerlein, E., Radmacher, M., Sackmann, E., Boulbitch, A., Bacterial turgor pressure can be measured by atomic force microscopy (2000) Phys Rev E, 62, pp. 1034-1044 
504 |a Ayub, N.D., Pettinari, M.J., Ruiz, J.A., López, N.I., A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance (2004) Curr Microbiol, 49, pp. 170-174 
504 |a Bai, W., Zhao, K., Asami, K., Effects of copper on dielectric properties of E. coli cells (2007) Coll Surf B Biointerfaces, 58, pp. 105-115 
504 |a Basu, A., Apte, S.K., Phale, P.S., Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86 (2006) Appl Environ Microbiol, 72 (3), pp. 2226-2230 
504 |a Basu, A., Das, D., Bapat, P., Wangikar, P.P., Phale, P.S., Sequential utilization of substrates by Pseudomonas putida CSV86: signatures of intermediate metabolites and online measurements (2009) Microbiol Res, 164, pp. 429-437 
504 |a Bender, C., Cooksey, D., Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance (1986) J Bacteriol, 165, pp. 534-541 
504 |a Benforte, F.C., Colonnella, M.A., Ricardi, M.M., Solar Venero, E.C., Lizarraga, L., López, N.I., Tribelli, P.M., Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis (2018) PLoS One, 13 (2) 
504 |a Bondarczuk, K., Piotrowska-Seget, Z., Molecular basis of active copper resistance mechanisms in Gram-negative bacteria (2013) Cell Biol Toxicol, 29, pp. 397-405 
504 |a Chayabutra, C., Ju, L.K., Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions (2000) Appl Environ Microbiol, 66, pp. 493-498 
504 |a Considine, R.F., Drummond, C.J., Dixon, D.R., Force of interaction between a biocolloid and an inorganic oxide: complexity of surface deformation, roughness and brushlike behavior (2001) Langmuir, 17, pp. 6325-6335 
504 |a Cooksey, D.A., Copper uptake and resistance in bacteria (1993) Mol Microbiol, 7, pp. 1-5 
504 |a Dong, Z.Y., Huang, W.H., Xing, D.F., Zhang, H.F., Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation (2013) J Hazard Mater, 260, pp. 399-408 
504 |a Flemming, C.A., Trevors, J.T., Copper toxicity and chemistry in the environment: a review (1989) Water Air Soil Pollut, 44, pp. 143-158 
504 |a Francius, G., Polyakov, P., Merlin, J., Abe, Y., Ghigo, J.M., Merlin, C., Beloin, C., Duval, J.F.L., Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress (2011) PLoS One 
504 |a Gaboriaud, F., Gee, M.L., Strugnell, R., Duval, F.L., Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media (2008) Langmuir, 24, pp. 10988-10995 
504 |a Kaczorek, E., Sałek, K., Guzik, U., Jesionowski, T., Cybulski, Z., Biodegradation of alkyl derivatives of aromatic hydrocarbons and cell surface properties of a strain of Pseudomonas stutzeri (2013) Chemosphere, 90, pp. 471-478 
504 |a Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Witholt, B., Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates (1988) Appl Environ Microbiol, 54, pp. 2924-2932 
504 |a Lee, S.M., Grass, G., Rensing, C., Barrett, S.R., Yates, C.J.D., Stoyanov, J.V., Brown, N.L., The Pco proteins are involved in periplasmic copper handling in Escherichia coli (2002) Biochem Biophys Res Commun, 295, pp. 616-620 
504 |a Li, X., Wang, X., Wan, L., Zhang, Y., Li, N., Li, D., Zhou, Q., Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells (2016) J Chem Technol Biotechnol, 91, pp. 267-275 
504 |a Lim, C.K., Cooksey, D.A., Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae (1993) J Bacteriol, 175, pp. 4492-4498 
504 |a López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Põtter, M., Steinbüchel, A., Méndez, B.S., Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an antarctic environment (2009) Curr Microbiol, 59, pp. 514-519 
504 |a Luo, H., Liu, G., Zhang, R., Jin, S., Phenol degradation in microbial fuel cells (2009) Chem Eng J, 147, pp. 259-264 
504 |a Montenegro, I.P.F.M., Mucha, A.P., Reis, I., Rodrigues, P., Almeida, C.M.R., Copper effect in petroleum hydrocarbons biodegradation by microorganisms associated to Juncus maritimus: role of autochthonous bioaugmentation (2017) Int J Environ Sci Technol, 14, pp. 943-955 
504 |a Mykytczuk, N.C.S., Trevors, J.T., Ferroni, G.D., Leduc, L.G., Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans (2011) Microbiol Res, 166, pp. 186-206 
504 |a Nakajima, M., Goto, M., Hibi, T., Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato (2002) J Gen Plant Pathol, 68, pp. 68-74 
504 |a Nečas, D., Klapetek, P., Gwyddion: an open-source software for SPM data analysis (2012) Cent Eur J Phys, 10, pp. 181-188 
504 |a Norman, R.S., Frontera-suau, R., Pamela, J., Morris, P.J., Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation (2002) Appl Environ Microbiol, 68, pp. 5096-5103 
504 |a Nunes, I., Jacquiod, S., Brejnrod, A., Holm, P.E., Johansen, A., Brandt, K.K., Priemé, A., Sørensen, S.J., Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure (2016) FEMS Microbiol Ecol, 92, p. fiw175 
504 |a Obuekwe, C.O., Al-Jadi, Z.K., Al-Saleh, E.S., Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment (2009) Int Biodeterior Biodegrad, 63, pp. 273-279 
504 |a Ohki, S., Arnold, K., Surface dielectric constant, surface hydrophobicity and membrane fusion (1990) J Membr Biol, 114, pp. 195-203 
504 |a Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon, M., de Crécy-Lagard, V., Vonstein, V., The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes (2005) Nucleic Acids Res, 33, pp. 5691-5702 
504 |a Radmacher, M., Fritz, M., Hansma, P.K., Imaging soft samples with the atomic force microscope: gelatin in water and propanol (1995) Biophys J, 69, pp. 264-270 
504 |a Raiger Iustman, L.J., Tribelli, P.M., Ibarra, J.G., Catone, M.V., Solar Venero, E.C., López, N.I., Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance (2015) Extremophiles, 19, pp. 207-220 
504 |a Ramadass, K., Megharaj, M., Venkateswarlu, K., Naidu, R., Soil bacterial strains with heavy metal resistance and high potential in degrading diesel oil and n-alkanes (2016) Int J Environ Sci Technol, 13, pp. 2863-2874 
504 |a Rojo, F., Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment (2010) FEMS Microbiol Rev, 34, pp. 658-684 
504 |a Rosenberg, M., Gutnick, D., Rosenberg, E., Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity (1980) FEMS Microbiol Lett, 9, pp. 29-33 
504 |a Sandrin, T.R., Hoffman, D.R., Bioremediation of organic and metal co-contaminated environments: effects of metal toxicity, speciation, and bioavailability on biodegradation (2007) Environmental bioremediation technologies, pp. 1-34. , Singh SN, Tripathi RD, (eds), Springer, Heidelberg 
504 |a Sani, R.K., Peyton, B.M., Brown, L.T., Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead (2001) Appl Environ Microbiol, 67, pp. 4765-4772 
504 |a Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J., Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis (2012) Biodegradation, 23, pp. 645-651 
504 |a Tribelli, P.M., Raiger Iustman, L.J., Catone, M.V., Di Martino, C., Revale, S., Méndez, B.S., López, N.I., Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress-resistant antarctic bacterium (2012) J Bacteriol, 194, pp. 2381-2382 
504 |a Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Raiger Iustman, L.J., Molin, S., López, N.I., Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium Pseudomonas extremaustralis (2015) PLoS One 
504 |a Tribelli, P.M., Rossi, L., Ricardi, M.M., Gomez-Lozano, M., Molin, S., Raiger Iustman, L.J., López, N.I., Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach (2017) J Ind Microbiol Biotechnol 
504 |a Van Liedekerke, M., Prokop, G., Rabl-berger, S., Kibblewhite, M., Progress in the management of contaminated sites in Europe (2014) JRC Ref Rep 
504 |a Vullo, D.L., Ceretti, H.M., Daniel, M.A., Ramírez, S.A.M., Zalts, A., Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E (2008) Bioresour Technol, 99, pp. 5574-5581 
504 |a Wang, H., Wilksch, J.J., Lithgow, T., Strugnell, R.A., Gee, M.L., Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: the polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress (2013) Soft Matter, 9, pp. 7560-7567 
504 |a Wang, H., Wilksch, J.J., Strugnell, R.A., Gee, M.L., Role of capsular polysaccharides in biofilm formation: an AFM nanomechanics study (2015) ACS Appl Mater Interfaces, 7, pp. 13007-13013 
520 3 |a Environments co-contaminated with heavy metals and hydrocarbons have become an important problem worldwide, especially due to the effect of metals on hydrocarbon degrading microorganisms. Pseudomonas extremaustralis, a bacterium isolated from a pristine pond in Antarctica, showed high capabilities to cope with environmental stress and a very versatile metabolism that includes alkane degradation under microaerobic conditions. In this work, we analyzed P. extremaustralis’ capability to resist high copper concentrations and the effect of copper presence in diesel biodegradation. We observed that P. extremaustralis resisted up to 4 mM CuSO 4 in a rich medium such as LB. This copper resistance is sustained by the presence of the cus and cop operons together with other efflux systems and porins located in a single region in P. extremaustralis genome. When copper was present, diesel degradation was negatively affected, even though copper enhanced bacterial attachment to hydrocarbons. However, when a small amount of glucose (0.05% w/v) was added, the presence of CuSO 4 enhanced alkane degradation. In addition, atomic force microscopy analysis showed that the presence of glucose decreased the negative effects produced by copper and diesel on the cell envelopes. © 2018, Springer Japan KK, part of Springer Nature.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Manitoba Arts Council 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Acknowledgements This work was partially supported by grants from UBA, CONICET, and ANPCyT. NIL, LL, and LJRI are career investigators from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina). MAC has a postgraduate fellowship from Con-sejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina). 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes, 2160, Buenos Aires, C1428EGA, Argentina 
593 |a IQUIBICEN, CONICET, Buenos Aires, Argentina 
593 |a CIBION, CONICET, Buenos Aires, Argentina 
690 1 0 |a AFM 
690 1 0 |a COPPER RESISTANCE 
690 1 0 |a DIESEL DEGRADATION 
690 1 0 |a P. EXTREMAUSTRALIS 
700 1 |a Lizarraga, L. 
700 1 |a Rossi, L. 
700 1 |a Díaz Peña, R. 
700 1 |a Egoburo, D. 
700 1 |a López, N.I. 
700 1 |a Iustman, L.J.R. 
773 0 |d Springer Tokyo, 2019  |g v. 23  |h pp. 91-99  |k n. 1  |p Extremophiles  |x 14310651  |t Extremophiles 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055573670&doi=10.1007%2fs00792-018-1063-2&partnerID=40&md5=4ed089af4ed46f30b6919ca124e8fb41  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00792-018-1063-2  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14310651_v23_n1_p91_Colonnella  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14310651_v23_n1_p91_Colonnella  |y Registro en la Biblioteca Digital 
961 |a paper_14310651_v23_n1_p91_Colonnella  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86704