Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc

Wind turbine wake interference is a relevant phenomenon that involves speed losses and turbulence increments which greatly affect downstream turbines, and power efficiency of wind farms. To precisely simulate wake interaction, the most common simplified wind turbine model, the Actuator Disc (AD) mod...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Navarro Diaz, G.P
Otros Autores: Saulo, A.C, Otero, A.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11200caa a22010577a 4500
001 PAPER-25646
003 AR-BaUEN
005 20230518205744.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85059852303 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Navarro Diaz, G.P. 
245 1 0 |a Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc 
260 |b Elsevier B.V.  |c 2019 
270 1 0 |m Otero, A.D.; Centro de Simulación Computacional para Aplicaciones Tecnológicas, CONICET, Godoy Cruz 2390, Argentina; email: alejandro.otero@csc.conicet.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Avila, M., Gargallo-Peiró, A., Folch, A., A CFD framework for offshore and onshore wind farm simulation (2017) Journal of Physics: Conference Series, 854, p. 012002. , IOP Publishing 
504 |a Burton, T., Wind Energy Handbook (2001), Wiley; Castellani, F., Vignaroli, A., An application of the actuator disc model for wind turbine wakes calculations (2013) Appl. Energy, 101, pp. 432-440 
504 |a Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D., Kühn, M., The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms (2015) J. Wind Eng. Ind. Aerod., 144, pp. 146-153 
504 |a El Kasmi, A., Masson, C., An extended k–ε model for turbulent flow through horizontal-axis wind turbines (2008) J. Wind Eng. Ind. Aerod., 96 (1), pp. 103-122 
504 |a El-Askary, W., Sakr, I., AbdelSalam, A.M., Abuhegazy, M., Modeling of wind turbine wakes under thermally-stratified atmospheric boundary layer (2017) J. Wind Eng. Ind. Aerod., 160, pp. 1-15 
504 |a Glauert, H., Airplane propellers (1935) Aerodynamic Theory, pp. 169-360. , Springer 
504 |a Javaheri, A., Cañadillas, B., Wake modelling of an offshore wind farm using OpenFOAM (2013) DEWI magazine, p. 118 
504 |a Keck, R.E., A numerical investigation of nacelle anemometry for a HAWT using actuator disc and line models in CFX (2012) Renew. Energy, 48, pp. 72-84 
504 |a Krogstad, P.Å., Eriksen, P.E., “Blind test” calculations of the performance and wake development for a model wind turbine (2013) Renew. Energy, 50, pp. 325-333 
504 |a Krogstad, P.Å., Sætran, L., Adaramola, M.S., “Blind Test 3” calculations of the performance and wake development behind two in-line and offset model wind turbines (2015) J. Fluid Struct., 52, pp. 65-80 
504 |a Launder, B.E., Spalding, D.B., The numerical computation of turbulent flows (1974) Comput. Methods Appl. Mech. Eng., 3 (2), pp. 269-289 
504 |a Makridis, A., Chick, J., Validation of a CFD model of wind turbine wakes with terrain effects (2013) J. Wind Eng. Ind. Aerod., 123, pp. 12-29 
504 |a Murali, A., Rajagopalan, R., Numerical simulation of multiple interacting wind turbines on a complex terrain (2017) J. Wind Eng. Ind. Aerod., 162, pp. 57-72 
504 |a Naderi, S., Parvanehmasiha, S., Torabi, F., Modeling of horizontal axis wind turbine wakes in Horns Rev offshore wind farm using an improved actuator disc model coupled with computational fluid dynamic (2018) Energy Convers. Manag., 171, pp. 953-968 
504 |a Nygaard, N.G., Wakes in very large wind farms and the effect of neighbouring wind farms (2014) Journal of Physics: Conference Series, 524, p. 012162. , IOP Publishing 
504 |a (2017), http:/www.openfoam.org/, OpenFOAM URL; Panofsky, H.A., Dutton, J., Atmospheric Turbulence: Models and Methods for Engineering Applications (1984), p. 397. , John Wiley New York; Pierella, F., Krogstad, P.Å., Sætran, L., Blind Test 2” calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds (2014) Renew. Energy, 70, pp. 62-77 
504 |a Politis, E.S., Prospathopoulos, J., Cabezon, D., Hansen, K.S., Chaviaropoulos, P., Barthelmie, R.J., Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues (2012) Wind Energy, 15 (1), pp. 161-182 
504 |a Porté-Agel, F., Wu, Y.T., Lu, H., Conzemius, R.J., Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms (2011) J. Wind Eng. Ind. Aerod., 99 (4), pp. 154-168 
504 |a Porté-Agel, F., Wu, Y.T., Chen, C.H., A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm (2013) Energies, 6 (10), pp. 5297-5313 
504 |a Réthoré, P.E., van der Laan, P., Troldborg, N., Zahle, F., Sørensen, N.N., Verification and validation of an actuator disc model (2014) Wind Energy, 17 (6), pp. 919-937 
504 |a Sanderse, B., Pijl, S., Koren, B., Review of computational fluid dynamics for wind turbine wake aerodynamics (2011) Wind Energy, 14 (7), pp. 799-819 
504 |a Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., A new k - ε eddy viscosity model for high Reynolds number turbulent flows (1995) Comput. Fluids, 24 (3), pp. 227-238 
504 |a Troldborg, N., Meyer Forsting, A.R., A simple model of the wind turbine induction zone derived from numerical simulations (2017) Wind Energy, 20 (12), pp. 2011-2020 
504 |a Tzimas, M., Prospathopoulos, J., Wind turbine rotor simulation using the actuator disk and actuator line methods (2016) Journal of Physics: Conference Series, 753, p. 032056. , IOP Publishing 
504 |a van der Laan, M.P., Sørensen, N.N., Réthoré, P.E., Mann, J., Kelly, M.C., Troldborg, N., An improved k- ε model applied to a wind turbine wake in atmospheric turbulence (2015) Wind Energy, 18 (5), pp. 889-907 
504 |a van der Laan, M.P., Sørensen, N.N., Réthoré, P.E., Mann, J., Kelly, M.C., Troldborg, N., The k-ε-fp model applied to wind farms (2015) Wind Energy, 18 (12), pp. 2065-2084 
504 |a van der Laan, M.P., Sørensen, N.N., Réthoré, P.E., Mann, J., Kelly, M.C., Troldborg, N., The k-ε-fp model applied to double wind turbine wakes using different actuator disk force methods (2015) Wind Energy, 18 (12), pp. 2223-2240 
504 |a van der Laan, P.M., Sørensen, N.N., Réthoré, P.E., Mann, J., Kelly, M.C., Troldborg, N., The k-ε-fp model applied to wind farms (2015) Wind Energy, 18 (12) 
504 |a van Kuik, G., Sørensen, J., Okulov, V., Rotor theories by professor joukowsky: momentum theories (2015) Prog. Aero. Sci., 73, pp. 1-18 
504 |a Vinazza, D., Otero, A., Soba, A., Mocskos, E., Initial experiences from tupac supercomputer (2017) Latin American High Performance Computing Conference, pp. 38-52. , Springer 
504 |a Wu, Y.T., Porté-Agel, F., Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations (2011) Boundary-Layer Meteorol., 138 (3), pp. 345-366 
520 3 |a Wind turbine wake interference is a relevant phenomenon that involves speed losses and turbulence increments which greatly affect downstream turbines, and power efficiency of wind farms. To precisely simulate wake interaction, the most common simplified wind turbine model, the Actuator Disc (AD) model, is improved adding the capability to adapt the thrust force distribution to a non-uniform velocity field over the disc, and the orientation to different local wind directions. These situations are typically found in wind farm situation where turbines interact with wakes of upstream turbines and the terrain. This development is based on the OpenFOAM open source finite volume parallel software. The improved AD model is first validated against wind tunnel experiments. Then, an onshore wind farm case is presented, in which the complex interaction of the turbines and terrain is studied. Comparing with power efficiency of field measurements, the simulations succeed to capture the characteristic values for low and high wake impact situations, with differences of 2.5% and 1.3%, respectively. Results show that this improved AD model produces a better solution for wake interaction cases. Its usefulness to predict the wind farm power output at feasible computational cost is also evidenced. © 2018  |l eng 
536 |a Detalles de la financiación: PICT2013-1338 
536 |a Detalles de la financiación: National Council for Scientific Research, PIP 11220120100480CO 
536 |a Detalles de la financiación: This work was supported by the National Scientific and Technical Research Council [grant PIP 11220120100480CO ]; the National Agency for Scientific and Technological Promotion [grant PICT2013-1338 ]. The measurement data was kindly provided by GENNEIA S.A., for which the authors are very grateful. The authors would like to acknowledge the computational time from the TUPAC cluster made available by the CSC-CONICET for conducting this research. Appendix A 
593 |a Universidad de Buenos Aires, Facultad de Exactas y Ciencias Naturales, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina 
593 |a Centro de Simulación Computacional para Aplicaciones Tecnológicas, CONICET, Godoy Cruz 2390, Buenos Aires, C1425FQD, Argentina 
593 |a Servicio Meteorológico Nacional, Dorrego 4019Ciudad Autónoma de Buenos Aires C1425GBE, Argentina 
593 |a Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires, C1063ACV, Argentina 
690 1 0 |a ACTUATOR DISC MODEL 
690 1 0 |a COMPUTATIONAL FLUID DYNAMICS 
690 1 0 |a WAKE INTERFERENCE 
690 1 0 |a WIND FARM POWER EFFICIENCY 
690 1 0 |a WIND TURBINE 
690 1 0 |a ACTUATOR DISKS 
690 1 0 |a COMPUTATIONAL FLUID DYNAMICS 
690 1 0 |a EFFICIENCY 
690 1 0 |a ELECTRIC POWER SYSTEM INTERCONNECTION 
690 1 0 |a ELECTRIC UTILITIES 
690 1 0 |a LANDFORMS 
690 1 0 |a OPEN SOURCE SOFTWARE 
690 1 0 |a OPEN SYSTEMS 
690 1 0 |a VELOCITY 
690 1 0 |a WAKES 
690 1 0 |a WIND TUNNELS 
690 1 0 |a WIND TURBINES 
690 1 0 |a ACTUATOR DISC 
690 1 0 |a CHARACTERISTIC VALUE 
690 1 0 |a INTERACTION SIMULATIONS 
690 1 0 |a NON-UNIFORM VELOCITIES 
690 1 0 |a POWER EFFICIENCY 
690 1 0 |a WAKE INTERFERENCES 
690 1 0 |a WIND TUNNEL EXPERIMENT 
690 1 0 |a WIND TURBINE MODELING 
690 1 0 |a ONSHORE WIND FARMS 
700 1 |a Saulo, A.C. 
700 1 |a Otero, A.D. 
773 0 |d Elsevier B.V., 2019  |g v. 186  |h pp. 58-67  |p J. Wind Eng. Ind. Aerodyn.  |x 01676105  |w (AR-BaUEN)CENRE-5894  |t Journal of Wind Engineering and Industrial Aerodynamics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059852303&doi=10.1016%2fj.jweia.2018.12.018&partnerID=40&md5=dc6e253c593dfe2b2f36fd6738307b2a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jweia.2018.12.018  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01676105_v186_n_p58_NavarroDiaz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01676105_v186_n_p58_NavarroDiaz  |y Registro en la Biblioteca Digital 
961 |a paper_01676105_v186_n_p58_NavarroDiaz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86599