Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?

Activation of anticancer therapeutics such as ruthenium (Ru) complexes is currently a topic of intense investigation. The success of phototherapy relies on photoactivation of therapeutics after the light passes through skin and tissue. In this paper, the photoactivation of anticancer Ru complexes wi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sun, W.
Otros Autores: Thiramanas, R., Slep, L.D, Zeng, X., Mailänder, V., Wu, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley-VCH Verlag 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12255caa a22015497a 4500
001 PAPER-25438
003 AR-BaUEN
005 20230518205729.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85025090057 
024 7 |2 cas  |a ruthenium, 7440-18-8; Antineoplastic Agents; Coordination Complexes; Ruthenium 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CEUJE 
100 1 |a Sun, W. 
245 1 0 |a Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go? 
260 |b Wiley-VCH Verlag  |c 2017 
270 1 0 |m Mailänder, V.; Max Planck Institute for Polymer Research, Ackermannweg 10, Germany; email: volker.mailaender@unimedizin-mainz.de 
506 |2 openaire  |e Política editorial 
504 |a Cheng, L., Wang, C., Feng, L., Yang, K., Liu, Z., (2014) Chem. Rev., 114, pp. 10869-10939 
504 |a Alvarez-Lorenzo, C., Bromberg, L., Concheiro, A., (2009) Photochem. Photobiol., 85, pp. 848-860 
504 |a Zhao, Y., (2007) Chem. Rec., 7, pp. 286-294 
504 |a Rai, P., Mallidi, S., Zheng, X., Rahmanzadeh, R., Mir, Y., Elrington, S., Khurshid, A., Hasan, T., (2010) Adv. Drug Delivery Rev., 62, pp. 1094-1124 
504 |a Hiltebrandt, K., Elies, K., D′Hooge, D.R., Blinco, J.P., Barner-Kowollik, C., (2016) J. Am. Chem. Soc., 138, pp. 7048-7054 
504 |a Mueller, J.O., Schmidt, F.G., Blinco, J.P., Barner-Kowollik, C., (2015) Angew. Chem. Int. Ed., 54, pp. 10284-10288 
504 |a (2015) Angew. Chem., 127, pp. 10423-10427 
504 |a Bednarski, P.J., Mackay, F.S., Sadler, P.J., (2007) Anticancer Agents Med.Chem., 7, pp. 75-93 
504 |a Mackay, F.S., Woods, J.A., Heringová, P., Kašpárková, J., Pizarro, A.M., Moggach, S.A., Parsons, S., Sadler, P.J., (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 20743-20748 
504 |a Fan, W., Tong, X., Yan, Q., Fu, S., Zhao, Y., (2014) Chem. Commun., 50, pp. 13492-13494 
504 |a Lin, Q., Bao, C., Cheng, S., Yang, Y., Ji, W., Zhu, L., (2012) J. Am. Chem. Soc., 134, pp. 5052-5055 
504 |a Yu, G., Yu, W., Mao, Z., Gao, C., Huang, F., (2015) Small, 11, pp. 919-925 
504 |a Wu, S., Butt, H.J., (2016) Adv. Mater., 28, pp. 1208-1226 
504 |a Weissleder, R., Ntziachristos, V., (2003) Nat. Med., 9, pp. 123-128 
504 |a Huang, H., Yu, B., Zhang, P., Huang, J., Chen, Y., Gasser, G., Ji, L., Chao, H., (2015) Angew. Chem. Int. Ed., 54, pp. 14049-14052 
504 |a (2015) Angew. Chem., 127, pp. 14255-14258 
504 |a Zhuang, X., Ma, X., Xue, X., Jiang, Q., Song, L., Dai, L., Zhang, C., Liang, X.J., (2016) ACS Nano, 10, pp. 3486-3495 
504 |a Nikolenko, V., Yuste, R., Zayat, L., Baraldo, L.M., Etchenique, R., (2005) Chem. Commun., pp. 1752-1754 
504 |a Araya, R., Andino-Pavlovsky, V., Yuste, R., Etchenique, R., (2013) ACS Chem. Neurosci., 4, pp. 1163-1167 
504 |a Furuta, T., Wang, S.S.-H., Dantaker, J.L., Dore, T.M., Bybee, W.J., Callaway, E.M., Denk, W., Tsien, R.T., (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 1193-1200 
504 |a Álvarez, M., Best, A., Pradhan-Kadam, S., Koynov, K., Jonas, U., Kreiter, M., (2008) Adv. Mater., 20, pp. 4563-4567 
504 |a Dai, Y., Xiao, H., Liu, J., Yuan, Q., Ma, P., Yang, D., Li, C., Lin, J., (2013) J. Am. Chem. Soc., 135, pp. 18920-18929 
504 |a Yan, B., Boyer, J.-C., Branda, N.R., Zhao, Y., (2011) J. Am. Chem. Soc., 133, pp. 19714-19717 
504 |a Wang, F., Banerjee, D., Liu, Y., Chen, X., Liu, X., (2010) Analyst, 135, pp. 1839-1854 
504 |a Ruggiero, E., Habtemariam, A., Yate, L., Mareque-Rivas, J.C., Salassa, L., (2014) Chem. Commun., 50, pp. 1715-1718 
504 |a Chen, Z., Sun, W., Butt, H.J., Wu, S., (2015) Chem. Eur. J., 21, pp. 9165-9170 
504 |a Anderson, E.D., Gorka, A.P., Schnermann, M.J., (2016) Nat. Commun., 7, p. 13378 
504 |a Mari, C., Pierroz, V., Ferrari, S., Gasser, G., (2015) Chem. Sci., 6, pp. 2660-2686 
504 |a Liu, K., Xing, R., Zou, Q., Ma, G., Mohwald, H., Yan, X., (2016) Angew. Chem. Int. Ed., 55, pp. 3036-3039 
504 |a (2016) Angew. Chem., 128, pp. 3088-3091 
504 |a Zhang, N., Zhao, F., Zou, Q., Li, Y., Ma, G., Yan, X., (2016) Small, 12, pp. 5936-5943 
504 |a Lv, G., Guo, W., Zhang, W., Zhang, T., Li, S., Chen, S., Eltahan, A.S., Liang, X.J., (2016) ACS Nano, 10, pp. 9637-9645 
504 |a Pinnick, D.V., Burham, B., (1984) Inorg. Chem., 23, pp. 1440-1445 
504 |a Zayat, L., Calero, C., Alborés, P., Baraldo, L., Etchenique, R., (2003) J. Am. Chem. Soc., 125, pp. 882-883 
504 |a Garner, R.N., Gallucci, J.C., Dunbar, K.R., Turro, C., (2011) Inorg. Chem., 50, pp. 9213-9215 
504 |a Respondek, T., Garner, R.N., Herroon, M.K., Podgorski, I., Turro, C., Kodanko, J.J., (2011) J. Am. Chem. Soc., 133, pp. 17164-17167 
504 |a Sun, W., Li, S., Haupler, B., Liu, J., Jin, S., Steffen, W., Schubert, U.S., Wu, S., (2017) Adv. Mater., 29, p. 1603702 
504 |a Sun, W., Parowatkin, M., Steffen, W., Butt, H.J., Mailander, V., Wu, S., (2016) Adv. Healthcare Mater., 5, pp. 467-473 
504 |a Wachter, E., Heidary, D.K., Howerton, B.S., Parkin, S., Glazer, E.C., (2012) Chem. Commun., 48, pp. 9649-9651 
504 |a Kaspler, P., Lazic, S., Forward, S., Arenas, Y., Mandel, A., Lilge, L., (2016) Photochem. Photobiol. Sci., 15, pp. 481-495 
504 |a Trondl, R., Heffeter, P., Kowol, C.R., Jakupec, M.A., Berger, W., Keppler, B.K., (2014) Chem. Sci., 5, pp. 2925-2932 
504 |a Knoll, J.D., Turro, C., (2015) Coord. Chem. Rev., 282-283, pp. 110-126 
504 |a White, J.K., Schmehl, R.H., Turro, C., (2017) Inorg. Chim. Acta, 454, pp. 7-20 
504 |a Karaoun, N., Renfrew, A.K., (2015) Chem. Commun., 51, pp. 14038-14041 
504 |a Sgambellone, M.A., David, A., Garner, R.N., Dunbar, K.R., Turro, C., (2013) J. Am. Chem. Soc., 135, pp. 11274-11282 
504 |a Siewert, B., van Rixel, V.H., van Rooden, E.J., Hopkins, S.L., Moester, M.J., Ariese, F., Siegler, M.A., Bonnet, S., (2016) Chem. Eur. J., 22, pp. 10960-10968 
504 |a Albani, B.A., Peña, B., Leed, N.A., de Paula, N.A., Pavani, C., Baptista, M.S., Dunbar, K.R., Turro, C., (2014) J. Am. Chem. Soc., 136, pp. 17095-17101 
504 |a van Rixel, V.H.S., Siewert, B., Hopkins, S.L., Askes, S.H.C., Busemann, A., Siegler, M.A., Bonnet, S., (2016) Chem. Sci., 7, pp. 4922-4929 
504 |a Filevich, O., Zayat, L., Baraldo, L.M., Etchenique, R., (2014) Luminiscent and Photoactive Transition Metla Complexes as Biomolecular Probes and Reagents, Structure and Bonding Vol. 165, pp. 47-68. , in, (Ed, K. K.-W. Lo, Springer International Publishing, Switzerland 
504 |a Lameijer, L.N., Hopkins, S.L., Breve, T.G., Askes, S.H., Bonnet, S., (2016) Chem. Eur. J., 22, pp. 18484-18491 
504 |a Zhang, P., Huang, H., Huang, J., Chen, H., Wang, J., Qiu, K., Zhao, D., Chao, H., (2015) ACS Appl. Mater. Interfaces, 7, pp. 23278-23290 
504 |a Orlando, F.L., (2000), OrlandoFL.American National Standard for Safe Use of Lasers, Laser Institute of America: 2000; Can, A.A., Bölükbaşiateş, G., Solmaz, H., Kaya, Ö., Gülsoy, M., (2016) International Journal of Oncology and Cancer Therapy, 1, pp. 7-11 
504 |a Liu, Y., Turner, D.B., Singh, T.N., Angeles-Boza, A.M., Chouai, A., Dunbar, K.R., Turro, C., (2009) J. Am. Chem. Soc., 131, pp. 26-27 
504 |a Hecker, C.R., Fanwick, P.E., McMillin, D.R., (1991) Inorg. Chem., 30, pp. 659-666 
504 |a Albani, B.A., Durr, C.B., Turro, C., (2013) J. Phys. Chem. A, 117, pp. 13885-13892 
504 |a San Miguel, V., Álvarez, M., Filevich, O., Etchenique, R., del Campo, A., (2012) Langmuir, 28, pp. 1217-1221 
504 |a Petroni, A., Slep, L.D., Etchenique, R., (2008) Inorg. Chem., 47, pp. 951-956 
504 |a Marcolongo, J.P., Weyhermuller, T., Slep, L.D., (2015) Inorg. Chim. Acta, 429, pp. 174-182 
520 3 |a Activation of anticancer therapeutics such as ruthenium (Ru) complexes is currently a topic of intense investigation. The success of phototherapy relies on photoactivation of therapeutics after the light passes through skin and tissue. In this paper, the photoactivation of anticancer Ru complexes with 671-nm red light through tissue of different thicknesses was studied. Four photoactivatable Ru complexes with different absorption wavelengths were synthesized. Two of them (Ru3 and Ru4) were responsive to wavelengths in the “therapeutic window” (650–900 nm) and could be activated using 671-nm red light after passing through tissue up to 16-mm-thick. The other two (Ru1 and Ru2) could not be activated using red light. Additionally, activated Ru4 caused inhibition of cancer cells. These results suggest that photoactivatable Ru complexes are promising for applications in deep-tissue phototherapy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim  |l eng 
536 |a Detalles de la financiación: China Scholarship Council 
536 |a Detalles de la financiación: Verband der Chemischen Industrie, 661548 
536 |a Detalles de la financiación: Mainz, WU 787/2-1 
536 |a Detalles de la financiación: W.S. was supported by the CSC program. R. T. was supported by the National Nanotechnology Center, Thailand and Royal Thai Government Scholarship. This work was supported by the Fonds der Chemischen Industrie (FCI, No. 661548) and the Deutsche Forschungs-gemeinschaft (DFG, WU 787/2-1). We wish to thank A. Best (MPIP, Mainz) for his technical support, Dr. M. Wagner for NMR analysis, D. Wang (MPIP, Mainz) for taking photos, and Prof. Dr. H.-J. Butt (MPIP, Mainz) for helpful discussion. 
593 |a Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany 
593 |a Center for Translational Nanomedicine, Dermatology Clinic, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany 
593 |a Departamento de Química Inorgánica, AnalíticayQuímica Física, Facultad de Ciencias ExactasyNaturales, and, INQUIMAE Universidad de Buenos Aires/ CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina 
690 1 0 |a ANTICANCER 
690 1 0 |a METALLODRUG 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a PHOTOTHERAPY 
690 1 0 |a RU COMPLEX 
690 1 0 |a PHOTOCHEMICAL REACTIONS 
690 1 0 |a RUTHENIUM 
690 1 0 |a RUTHENIUM COMPOUNDS 
690 1 0 |a SYNTHESIS (CHEMICAL) 
690 1 0 |a ABSORPTION WAVELENGTHS 
690 1 0 |a ANTI-CANCER THERAPEUTICS 
690 1 0 |a ANTICANCER 
690 1 0 |a METALLODRUG 
690 1 0 |a PHOTO ACTIVATIONS 
690 1 0 |a PHOTOACTIVATABLE 
690 1 0 |a PHOTOTHERAPY 
690 1 0 |a RU COMPLEXES 
690 1 0 |a TISSUE 
690 1 0 |a ANTINEOPLASTIC AGENT 
690 1 0 |a COORDINATION COMPOUND 
690 1 0 |a RUTHENIUM 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a CHEMISTRY 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a HELA CELL LINE 
690 1 0 |a HUMAN 
690 1 0 |a INFRARED RADIATION 
690 1 0 |a SPECTROPHOTOMETRY 
690 1 0 |a ANTINEOPLASTIC AGENTS 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a COORDINATION COMPLEXES 
690 1 0 |a HELA CELLS 
690 1 0 |a HUMANS 
690 1 0 |a INFRARED RAYS 
690 1 0 |a RUTHENIUM 
690 1 0 |a SPECTROPHOTOMETRY 
700 1 |a Thiramanas, R. 
700 1 |a Slep, L.D. 
700 1 |a Zeng, X. 
700 1 |a Mailänder, V. 
700 1 |a Wu, S. 
773 0 |d Wiley-VCH Verlag, 2017  |g v. 23  |h pp. 10832-10837  |k n. 45  |p Chem. Eur. J.  |x 09476539  |w (AR-BaUEN)CENRE-83  |t Chemistry - A European Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025090057&doi=10.1002%2fchem.201701224&partnerID=40&md5=26883e8a9457277e710d6cd1a7d74fda  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/chem.201701224  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09476539_v23_n45_p10832_Sun  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09476539_v23_n45_p10832_Sun  |y Registro en la Biblioteca Digital 
961 |a paper_09476539_v23_n45_p10832_Sun  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion