Co-pyrolysis of polyethylene terephthalate (PET) bottle waste and poplar wood sawdust: Kinetics and char characterization

Plastics have become a crucial part of lifestyle, and the global plastic production has increased extremely during the past decades. At end-of-life, products disposal generates huge amounts of postconsumer plastic wastes which require safe management to avoid potentially detrimental impacts on the e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kim, M.R
Otros Autores: Bonelli, P.R, Cukierman, A.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nova Science Publishers, Inc. 2018
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15586caa a22009257a 4500
001 PAPER-25312
003 AR-BaUEN
005 20230518205720.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85048431285 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Kim, M.R. 
245 1 0 |a Co-pyrolysis of polyethylene terephthalate (PET) bottle waste and poplar wood sawdust: Kinetics and char characterization 
260 |b Nova Science Publishers, Inc.  |c 2018 
270 1 0 |m Cukierman, A.L.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias-Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía-PINMATE, Ciudad UniversitariaArgentina; email: analea@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Abnisa, F., Wan Daud, W.M.A., A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil (2014) Energy Conversion and Management, 87, pp. 71-85 
504 |a Azizi, K., Moraveji, M.K., Najafabadi, H.A., Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA (2017) Bioresource Technology, 243, pp. 481-491 
504 |a Bouma, K., Groot, G., Feijen, J., Gaymans, R., Polyesteramides based on PET and nylon 2, T. Part 2 (2000) Synthesis and thermal stability. Polymer 41, pp. 2727-2735 
504 |a Bonelli, P.R., Cukierman, A.L., Valorization of wastes from industrial processing of an agricultural product via thermochemical conversion processes (2015) Agricultural Wastes: Characteristics, Types and Management, 7, pp. 141-167. , ISBN: 978-1-63482-359-3, Editor Camille N. Foster. Nova Science Publishers, Inc., NY 
504 |a Brems, A., Baeyens, J., Vandecasteele, C., Dewil, R., Polymeric cracking of waste polyethylene terephthalate to chemicals and energy (2011) Journal of the Air & Waste Management Association, 61 (7), pp. 721-731 
504 |a Bungay, V.C., Kinetic study on the pyrolysis and gasification of plastic wastes (2017) Chemical Engineering Transactions, 56, pp. 193-198 
504 |a Çepeliogullar, O., Pütün, A.E., A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes (2014) Waste Management & Research, 32 (10), pp. 971-979 
504 |a Chen, L., Wang, S., Meng, H., Wu, Z., Zhao, J., Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste (2017) Applied Thermal Engineering, 111, pp. 834-846 
504 |a Collard, F.-X., Blin, J., A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin (2014) Renewable and Sustainable Energy Reviews, 38, pp. 594-608 
504 |a Cukierman, A.L., Bonelli, P.R., Potentialities of biochars from different biomasses for climate change abatement by carbon capture and soil amelioration (2015) Advances in Environmental Research, 4, pp. 57-80. , Editor: Justin A. Daniels. Nova Science Publishers, Inc., NY 
504 |a Cukierman, A.L., Bonelli, P.R., Agricultural wastes as potential feedstock for activated carbons development (2017) Agricultural Research Updates Volume 18, 1, pp. 1-30. , Nova Science Publishers, Inc., NY 
504 |a El Essawy, N.A., Konsowa, A.H., Elnouby, M., Farag, H.A., A novel onestep synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste (2017) Journal of the Air & Waste Management Association, 67 (3) 
504 |a Feldman, D., Barbalata, A., (1996) Synthetic polymers. Technology, properties, applications, , Chapman & Hall, London 
504 |a González, J.D., Kim, M.R., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., Pyrolysis of biomass from sustainable energy plantations: Effect of mineral matter reduction on kinetics and charcoal pore structure. Energy Sources (2008) Part A: Recovery, Utilization, and Environmental Effects, 30 (9), pp. 809-817 
504 |a Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L., Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion (2015) Journal of Analytical and Applied Pyrolysis, 113, pp. 508-517 
504 |a Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L., Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells (2017) Renewable Energy, 114, pp. 697-707 
504 |a Hassan, H., Lim, J.K., Hameed, B.H., Recent progress on biomass copyrolysis conversion into high-quality bio-oil (2016) Bioresource Technology, 221, pp. 645-655 
504 |a Holland, B.J., Hay, J.N., The thermal degradation of PET and analogous polyesters measured by thermal analysis-Fourier transform infrared spectroscopy (2002) Polymer, 43, pp. 1835-1847 
504 |a Kim, M.R., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., The thermochemical processing of municipal solid wastes: Thermal events and kinetics of pyrolysis (2010) Energy Sources. Part A: Recovery, Utilization, and Environmental Effects, 32, pp. 1207-1214 
504 |a Ko, K.-H., Sahajwalla, V., Rawal, A., Specific molecular structure changes and radical evolution during biomass-polyethylene terephthalate copyrolysis detected by 13C and 1H solid-state NMR (2014) Bioresource Technology, 170, pp. 248-255 
504 |a Khoonkari, M., Haghighi, A.H., Sefidbakht, Y., Shekoohi, K., Ghaderian, A., Chemical Recycling of PET Wastes with Different Catalysts (2015) International Journal of Polymer Science Volume, p. 11. , http://dx.doi.org/10.1155/2015/124524, Article ID 124524 
504 |a Lee, J., Lee, T., Tsang, Y.F., Oh, J.-I., Kwon, E.E., Enhanced energy recovery from polyethylene terephthalate via pyrolysis in CO2 atmosphere while suppressing acidic chemical species (2017) Energy Conversion and Management, 148, pp. 456-460 
504 |a Mukherjee, A., Lal, R., Zimmerman, A.R., Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil (2014) Science of the Total Environment, 487, pp. 26-36 
504 |a Nunell, G.V., Fernández, M.E., Bonelli, P.R., Cukierman, A.L., Development and characterization of activated carbons from Parkinsonia Aculeata wood by microwave assisted H3PO4 acid activation (2016) Adsorption, 22, pp. 347-356 
504 |a Nunell, G.V., Bonelli, P.R., Cukierman, A.L., Management strategy of an invasive woody plant species through conversion into adsorbents for remediation of polluted water (2016) Invasive Species: Ecology, Management Strategies and Conservation, 3, pp. 55-80. , Editor: J. Sutton. Nova Science Publishers, Inc., NY 
504 |a Parra, J.B., Ania, C.O., Arenillas, A., Rubiera, F., Palacios, J.M., Pis, J.J., Textural development and hydrogen adsorption of carbon materials from PET waste (2004) Journal of Alloys and Compounds, 379, pp. 280-289 
504 |a Ragaert, K., Delva, L., Van Geem, K., Mechanical and chemical recycling of solid plastic waste (2017) Waste Management, , http://dx.doi.org/10.1016/j.wasman.2017.07.044 
504 |a Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K.S.W., (2014) Adsorption by Powders and Porous Solids Principles, , Methodology and Applications 2nd Ed. Elsevier Ltd. Amsterdam 
504 |a Saha, B., Maiti, A.K., Ghoshal, A.K., Model-Free Method for Isothermal and Non Isothermal Decomposition Kinetics Analysis of PET Sample (2006) Thermochimica Acta, 444, pp. 46-52 
504 |a Sajdak, M., Impact of plastic blends on the product yield from co-pyrolysis of lignin-rich materials (2017) Journal of Analytical Applied Pyrolysis, 124, pp. 415-425 
504 |a Sajdak, M., Muzyka, R., Use of plastic waste as a fuel in the co-pyrolysis of biomass. Part I: The effect of the addition of plastic waste on the process and products (2014) Journal of Analytical and Applied Pyrolysis, 107, pp. 267-275 
504 |a Sajdak, M., Słowik, K., Use of plastic waste as a fuel in the co-pyrolysis of biomass: Part II. Variance analysis of the co-pyrolysis process (2014) Journal of Analytical and Applied Pyrolysis, 109, pp. 152-158 
504 |a Saleem, J., Ning, C., Barford, J., McKay, G., Combating oil spill problem using plastic waste (2015) Waste Management, 44, pp. 34-38 
504 |a Saleem, J., Riazc, M.A., McKay, G., Oil sorbents from plastic wastes and polymers: A review (2018) Journal of Hazardous Materials, 341, pp. 424-437 
504 |a Sharypov, V.I., Marin, N., Beregovtsova, N.G., Baryshnikov, S.V., Kuznetsov, B.N., Cebolla, V.L., Weber, J.V., Co-Pyrolysis of wood biomass and synthetic polymer mixtures. Part I: Influence of experimental conditions on the evolution of solids, liquids and gases (2002) Journal of Analytical and Applied Pyrolysis, 64, pp. 15-28 
504 |a Srinivasan, P., Sarmah, A.K., Smernik, R., Das, O., Farid, M., Gao, W.A., Feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications (2015) Science of the Total Environment, pp. 512-513 and 495-505 
504 |a Tripathi, M., Sahu, J.N., Ganesan, P., Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review (2016) Renewable and Sustainable Energy Reviews, 55, pp. 467-481 
504 |a Wang, S., Dai, G., Yang, H., Luo, Z., Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review (2017) Progress in Energy and Combustion Science, 62, pp. 33-86 
504 |a White, J.E., James Catallo, W., Legendre, B.L., Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies (2011) Journal of Analytical and Applied Pyrolysis, 91, pp. 1-33 
504 |a Yang, H., Yang, R., Chin, T., Tee Liang, D., Chen, H., Zheng, C., Thermogravimetric analysis-Fourier transform infrared analysis of palm oil waste pyrolysis (2004) Energy Fuels, 18, pp. 1814-1821 
504 |a Zhang, L., Xu, C., Champagne, P., Overview of recent advances in thermochemical conversion of biomass (2010) Energy Conversion Management, 51, pp. 969-982 
504 |a Zhang, M., Ok, Y.S., Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration (2014) Carbon Management, 5, pp. 255-257 
504 |a Zhou, L., Wang, Y., Huang, Q., Cai, J., Thermogravimetric Characteristics and Kinetic of Plastic and Biomass Blends Co-pyrolysis (2006) Fuel Processing Technology, 87, pp. 963-969 
504 |a Zimmerman, A.R., Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) (2010) Environmental Science and Technology, 4, 4, pp. 1295-1301 
520 3 |a Plastics have become a crucial part of lifestyle, and the global plastic production has increased extremely during the past decades. At end-of-life, products disposal generates huge amounts of postconsumer plastic wastes which require safe management to avoid potentially detrimental impacts on the environment. In particular, polyethylene terephthalate (PET) constitutes one of the major post-consumer plastics in solid waste streams because of the ongoing expansion of the PET bottle market. In the search of new routes for cost-effective solutions for plastics waste management, co-pyrolysis is perceived as an interesting technology for co-processing PET wastes with woody biomass in order to improve the quality and yield of liquid products for their use as fuels with respect to those produced from pyrolysis of the biomass individually. In this scenario, co-pyrolysis of equal proportions of PET bottle waste and poplar (Populus deltoide) wood sawdust, as representative biomass, is investigated. To obtain useful information for the reliable design and operation of conversion units, kinetic characterization of the co-pyrolysis and of the pyrolysis of the individual components is comparatively carried out by non-isothermal thermogravimetric analysis, from ambient temperature up to 600 °C, and modelling. The co-pyrolysis is characterized by an intermediate energy activation (~87 kJ mol-1) comprised between the values estimated for the pyrolysis of the individual wastes. Free radicals likely formed from wood sawdust pyrolysis at low temperatures (< 350 °C) should facilitate the degradation of the polymeric waste present in the mixture. On the other hand, the co-pyrolysis and the pyrolysis of the individual wastes are conducted in a bench-scale set-up at temperatures in the range 400 °C-600 °C, to obtain and characterize the solid products (chars). Char yield decreases with increasing temperature, mostly accompanied by reduction in volatile matter content and %O, and increases in ash and %C. At 500 °C and 600 °C, char yield for the co-pyrolysis attains intermediate values between those for the pyrolysis of the individual wastes, but it is lower at 400 °C pointing to synergistic effects. The higher %C of the chars derived from the co-pyrolysis at the two higher temperatures is reflected in enhanced calorific values (HHV≈30-31 MJ kg-1) compared to those produced from the biomass pyrolysis individually, suggesting greater potentialities for their use as solid fuels. Different predictors based on chemical characteristics of the chars also indicate that they might be applied in soil for carbon sequestration, especially those generated at the higher temperatures. Furthermore, the char obtained from the co-pyrolysis at 500 °C shows a BET surface area of ~400 m2 g-1 and total pore volume of 0.22 cm3 g-1. Accordingly, it could be employed as soil improver and/or as adsorbent of average quality for the uptake of water contaminants. © 2018 Nova Science Publishers, Inc.  |l eng 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias-Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía-PINMATE, Ciudad Universitaria, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Buenos Aires, Argentina 
690 1 0 |a CHAR CHARACTERIZATION 
690 1 0 |a CO-PYROLYSIS 
690 1 0 |a KINETICS 
690 1 0 |a PET WASTE 
690 1 0 |a PLASTIC WASTES DISPOSAL 
690 1 0 |a WASTE MANAGEMENT 
690 1 0 |a WOODY BIOMASS 
700 1 |a Bonelli, P.R. 
700 1 |a Cukierman, A.L. 
773 0 |d Nova Science Publishers, Inc., 2018  |h pp. 99-132  |p Municipal and Industrial Waste: Sources, Management Practices and Future Challenges  |z 9781536134421  |z 9781536134414  |t Municipal and Industrial Waste: Sources, Management Practices and Future Challenges 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048431285&partnerID=40&md5=cab5cf7a598844ed680bbc23955c8c54  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97815361_v_n_p99_Kim  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97815361_v_n_p99_Kim  |y Registro en la Biblioteca Digital 
961 |a paper_97815361_v_n_p99_Kim  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 86265