Regulation of alternative splicing through coupling with transcription and chromatin structure

Alternative precursor messenger RNA (pre-mRNA) splicing plays a pivotal role in the flow of genetic information from DNA to proteins by expanding the coding capacity of genomes. Regulation of alternative splicing is as important as regulation of transcription to determine cell- and tissue-specific f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Naftelberg, S.
Otros Autores: Schor, I.E, Ast, G., Kornblihtt, A.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Annual Reviews Inc. 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 53206caa a22039017a 4500
001 PAPER-24787
003 AR-BaUEN
005 20230607131918.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84930716439 
024 7 |2 cas  |a histone, 9062-68-4; Chromatin; Histones; Nucleosomes 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ARBOA 
100 1 |a Naftelberg, S. 
245 1 0 |a Regulation of alternative splicing through coupling with transcription and chromatin structure 
260 |b Annual Reviews Inc.  |c 2015 
270 1 0 |m Ast, G.; Sackler Medical School, Tel Aviv UniversityIsrael 
506 |2 openaire  |e Política editorial 
504 |a Hynes, R.O., The evolution of metazoan extracellular matrix (2012) J. Cell Biol., 196, pp. 671-679 
504 |a Keren, H., Lev-Maor, G., Ast, G., Alternative splicing and evolution: Diversification, exon definition and function (2010) Nat. Rev. Genet., 11, pp. 345-355 
504 |a Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J., Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing (2008) Nat. Genet., 40, pp. 1413-1415 
504 |a Barash, Y., Calarco, J.A., Gao, W., Pan, Q., Wang, X., Deciphering the splicing code (2010) Nature, 465, pp. 53-59 
504 |a Liang, X.H., Haritan, A., Uliel, S., Michaeli, S., Trans and cis splicing in trypanosomatids: Mechanism, factors, and regulation (2003) Eukaryot. Cell, 2, pp. 830-840 
504 |a Howe, K.J., Kane, C.M., Ares, M., Jr., Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae (2003) RNA, 9, pp. 993-1006 
504 |a Kornblihtt, A.R., Schor, I.E., Alló, M., Dujardin, G., Petrillo, E., Muñoz, M.J., Alternative splicing: A pivotal step between eukaryotic transcription and translation (2013) Nat. Rev. Mol. Cell Biol., 14, pp. 153-165 
504 |a Ast, G., How did alternative splicing evolve? (2004) Nat. Rev. Genet., 5, pp. 773-782 
504 |a Kafasla, P., Mickleburgh, I., Llorian, M., Coelho, M., Gooding, C., Defining the roles and interactions of PTB (2012) Biochem. Soc. Trans, 40, pp. 815-820 
504 |a Jelen, N., Ule, J., Zivin, M., Darnell, R.B., Evolution of Nova-dependent splicing regulation in the brain (2007) PLOS Genet., 3, pp. 1838-1847 
504 |a Lee, J.A., Tang, Z.Z., Black, D.L., An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons (2009) Genes Dev., 23, pp. 2284-2293 
504 |a Ule, J., Stefani, G., Mele, A., Ruggiu, M., Wang, X., An RNA map predicting Nova-dependent splicing regulation (2006) Nature, 444, pp. 580-586 
504 |a Chasin, L.A., Searching for splicing motifs (2007) Adv. Exp. Med. Biol., 623, pp. 85-106 
504 |a Liu, Q., Pante, N., Misteli, T., Elsagga, M., Crisp, M., Functional association of Sun1 with nuclear pore complexes (2007) J. Cell Biol., 178, pp. 785-798 
504 |a Martinez-Contreras, R., Cloutier, P., Shkreta, L., Fisette, J.F., Revil, T., Chabot, B., HnRNP proteins and splicing control (2007) Adv. Exp. Med. Biol., 623, pp. 123-147 
504 |a Berget, S.M., Exon recognition in vertebrate splicing (1995) J. Biol. Chem., 270, pp. 2411-2414 
504 |a Ardehali, M.B., Lis, J.T., Tracking rates of transcription and splicing in vivo (2009) Nat. Struct. Mol. Biol., 16, pp. 1123-1124 
504 |a Amit, M., Donyo, M., Hollander, D., Goren, A., Kim, E., Differential GC content between exons and introns establishes distinct strategies of splice-site recognition (2012) Cell Rep., 1, pp. 543-556 
504 |a Eperon, L.P., Graham, I.R., Griffiths, A.D., Eperon, I.C., Effects of RNA secondary structure on alternative splicing of pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase? (1988) Cell, 54, pp. 393-401 
504 |a Cramer, P., Caceres, J.F., Cazalla, D., Kadener, S., Muro, A.F., Coupling of transcription with alternative splicing: RNA Pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol. Cell, 4, pp. 251-258 
504 |a Cramer, P., Pesce, C.G., Baralle, F.E., Kornblihtt, A.R., Functional association between promoter structure and transcript alternative splicing (1997) PNAS, 94, pp. 11456-11460 
504 |a Beyer, A.L., Osheim, Y.N., Splice site selection, rate of splicing, and alternative splicing on nascent transcripts (1988) Genes Dev., 2, pp. 754-765 
504 |a Ameur, A., Zaghlool, A., Halvardson, J., Wetterbom, A., Gyllensten, U., Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain (2011) Nat. Struct. Mol. Biol., 18, pp. 1435-1440 
504 |a Carrillo Oesterreich, F., Preibisch, S., Neugebauer, K.M., Global analysis of nascent RNA reveals transcriptional pausing in terminal exons (2010) Mol. Cell, 40, pp. 571-581 
504 |a Khodor, Y.L., Rodriguez, J., Abruzzi, K.C., Tang, C.H., Marr, M.T., II, Rosbash, M., Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila (2011) Genes Dev., 25, pp. 2502-2512 
504 |a Tilgner, H., Knowles, D.G., Johnson, R., Davis, C.A., Chakrabortty, S., Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs (2012) Genome Res., 22, pp. 1616-1625 
504 |a Pandya-Jones, A., Black, D.L., Co-transcriptional splicing of constitutive and alternative exons (2009) RNA, 15, pp. 1896-1908 
504 |a Tardiff, D.F., Lacadie, S.A., Rosbash, M., A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional (2006) Mol. Cell, 24, pp. 917-929 
504 |a Görnemann, J., Kotovic, K.M., Hujer, K., Neugebauer, K.M., Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex (2005) Mol. Cell, 19, pp. 53-63 
504 |a Lacadie, S.A., Rosbash, M., Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA: 5′ss base pairing in yeast (2005) Mol. Cell, 19, pp. 65-75 
504 |a Listerman, I., Sapra, A.K., Neugebauer, K.M., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat. Struct. Mol. Biol., 13, pp. 815-822 
504 |a Wada, Y., Ohta, Y., Xu, M., Tsutsumi, S., Minami, T., A wave of nascent transcription on activated human genes (2009) PNAS, 106, pp. 18357-18361 
504 |a Bhatt, D.M., Pandya-Jones, A., Tong, A.J., Barozzi, I., Lissner, M.M., Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions (2012) Cell, 150, pp. 279-290 
504 |a Singh, J., Padgett, R.A., Rates of in situ transcription and splicing in large human genes (2009) Nat. Struct. Mol. Biol., 16, pp. 1128-1133 
504 |a Veloso, A., Kirkconnell, K.S., Magnuson, B., Biewen, B., Paulsen, M.T., Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications (2014) Genome Res., 24, pp. 896-905 
504 |a Jonkers, I., Kwak, H., Lis, J.T., Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons (2014) ELife, 3, p. e02407 
504 |a Darzacq, X., Shav-Tal, Y., De Turris, V., Brody, Y., Shenoy, S.M., In vivo dynamics of RNA polymerase II transcription (2007) Nat. Struct. Mol. Biol., 14, pp. 796-806 
504 |a Boireau, S., Maiuri, P., Basyuk, E., De La Mata, M., Knezevich, A., The transcriptional cycle of HIV-1 in real-time and live cells (2007) J. Cell Biol., 179, pp. 291-304 
504 |a Schmidt, U., Basyuk, E., Robert, M.C., Yoshida, M., Villemin, J.P., Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: Implications for alternative splicing regulation (2011) J. Cell Biol., 193, pp. 819-829 
504 |a Martin, R.M., Rino, J., Carvalho, C., Kirchhausen, T., Carmo-Fonseca, M., Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity (2013) Cell Rep., 4, pp. 1144-1155 
504 |a Vargas, D.Y., Shah, K., Batish, M., Levandoski, M., Sinha, S., Single-molecule imaging of transcriptionally coupled and uncoupled splicing (2011) Cell, 147, pp. 1054-1065 
504 |a Pagani, F., Stuani, C., Zuccato, E., Kornblihtt, A.R., Baralle, F.E., Promoter architecture modulates CFTR exon 9 skipping (2003) J. Biol. Chem., 278, pp. 1511-1517 
504 |a Nogues, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., Transcriptional activators differ in their abilities to control alternative splicing (2002) J. Biol. Chem., 277, pp. 43110-43114 
504 |a Auboeuf, D., Honig, A., Berget, S.M., O'malley, B.W., Coordinate regulation of transcription and splicing by steroid receptor coregulators (2002) Science, 298, pp. 416-419 
504 |a Auboeuf, D., Dowhan, D.H., Kang, Y.K., Larkin, K., Lee, J.W., Differential recruitment of nuclear receptor coactivatorsmay determine alternative RNA splice site choice in target genes (2004) PNAS, 101, pp. 2270-2274 
504 |a Auboeuf, D., Dowhan, D.H., Li, X., Larkin, K., Ko, L., CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing (2004) Mol. Cell. Biol., 24, pp. 442-453 
504 |a Monsalve, M., Wu, Z., Adelmant, G., Puigserver, P., Fan, M., Spiegelman, B.M., Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1 (2000) Mol. Cell, 6, pp. 307-316 
504 |a Guillouf, C., Gallais, I., Moreau-Gachelin, F., Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding-dependent manner (2006) J. Biol. Chem., 281, pp. 19145-19155 
504 |a Sánchez-Alvarez, M., Goldstrohm, A.C., Garcia-Blanco, M.A., Suñé, C., Humantranscription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions (2006) Mol. Cell. Biol., 26, pp. 4998-5014 
504 |a Pearson, J.L., Robinson, T.J., Muñoz M..J, Kornblihtt, A.R., Garcia-Blanco, M.A., Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing (2008) J. Biol. Chem., 283, pp. 7949-7961 
504 |a Eliseeva, I.A., Kim, E.R., Guryanov, S.G., Ovchinnikov, L.P., Lyabin, D.N., Y-box-binding protein 1 (YB-1) and its functions (2011) Biochem. Biokhimiia, 76, pp. 1402-1433 
504 |a Das, R., Yu, J., Zhang, Z., Gygi, M.P., Krainer, A.R., SR proteins function in coupling RNAP II transcription to pre-mRNA splicing (2007) Mol. Cell, 26, pp. 867-881 
504 |a Misteli, T., Spector, D.L., RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo (1999) Mol. Cell, 3, pp. 697-705 
504 |a Dower, K., Rosbash, M., T7 RNA polymerase-directed transcripts are processed in yeast and link 3′ end formation to mRNA nuclear export (2002) RNA, 8, pp. 686-697 
504 |a McCracken, S., Rosonina, E., Fong, N., Sikes, M., Beyer, A., Role of RNA polymerase II carboxyterminal domain in coordinating transcription with RNA processing (1998) Cold Spring Harb. Symp. Quant. Biol., 63, pp. 301-309 
504 |a Sisodia, S.S., Sollner-Webb, B., Cleveland, D.W., Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation (1987) Mol. Cell. Biol., 7, pp. 3602-3612 
504 |a Smale, S.T., Tjian, R., Transcription of herpes simplex virus tk sequences under the control of wild-type and mutant human RNA polymerase i promoters (1985) Mol. Cell. Biol., 5, pp. 352-362 
504 |a McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385, pp. 357-361 
504 |a Das, R., Dufu, K., Romney, B., Feldt, M., Elenko, M., Reed, R., Functional coupling of RNAP II transcription to spliceosome assembly (2006) Genes Dev., 20, pp. 1100-1109 
504 |a Hicks, M.J., Yang, C.R., Kotlajich, M.V., Hertel, K.J., Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns (2006) PLOS Biol., 4, p. e147 
504 |a Lazarev, D., Manley, J.L., Concurrent splicing and transcription are not sufficient to enhance splicing efficiency (2007) RNA, 13, pp. 1546-1557 
504 |a Romano, M., Marcucci, R., Baralle, F.E., Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene (2001) Nucleic Acids Res., 29, pp. 886-894 
504 |a Fededa, J.P., Petrillo, E., Gelfand, M.S., Neverov, A.D., Kadener, S., A polar mechanism coordinates different regions of alternative splicing within a single gene (2005) Mol. Cell, 19, pp. 393-404 
504 |a Lenasi, T., Peterlin, B.M., Dovc, P., Distal regulation of alternative splicing by splicing enhancer in equine β-casein intron 1 (2006) RNA, 12, pp. 498-507 
504 |a Ares, M., Jr., Grate, L., Pauling, M.H., A handful of intron-containing genes produces the lion's share of yeast mRNA (1999) RNA, 5, pp. 1138-1139 
504 |a Reed, R., Hurt, E., A conserved mRNA export machinery coupled to pre-mRNA splicing (2002) Cell, 108, pp. 523-531 
504 |a Moore, M.J., Proudfoot, N.J., Pre-mRNA processing reaches back to transcription and ahead to translation (2009) Cell, 136, pp. 688-700 
504 |a Fong, Y.W., Zhou, Q., Stimulatory effect of splicing factors on transcriptional elongation (2001) Nature, 414, pp. 929-933 
504 |a Kwek, K.Y., Murphy, S., Furger, A., Thomas, B., O'gorman, W., U1 snRNA associates with TFIIH and regulates transcriptional initiation (2002) Nat. Struct. Biol., 9, pp. 800-805 
504 |a Furger, A., O'sullivan, J.M., Binnie, A., Lee, B.A., Proudfoot, N.J., Promoter proximal splice sites enhance transcription (2002) Genes Dev., 16, pp. 2792-2799 
504 |a Spiluttini, B., Gu, B., Belagal, P., Smirnova, A.S., Nguyen, V.T., Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells (2010) J. Cell Sci., 123, pp. 2085-2093 
504 |a Brody, Y., Neufeld, N., Bieberstein, N., Causse, S.Z., Böhnlein, E.M., The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing (2011) PLOS Biol., 9, p. e1000573 
504 |a Core, L.J., Lis, J.T., Transcription regulation through promoter-proximal pausing of RNA polymerase II (2008) Science, 319, pp. 1791-1792 
504 |a Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B., Sharp, P.A., Promoter directionality is controlled by U1 snRNP and polyadenylation signals (2013) Nature, 499, pp. 360-363 
504 |a Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., Fu, X.D., The splicing factor SC35 has an active role in transcriptional elongation (2008) Nat. Struct. Mol. Biol., 15, pp. 819-826 
504 |a Ji, X., Zhou, Y., Pandit, S., Huang, J., Li, H., SR proteins collaborate with 7SK and promoterassociated nascent RNA to release paused polymerase (2013) Cell, 153, pp. 855-868 
504 |a Alexander, R.D., Innocente, S.A., Barrass, J.D., Beggs, J.D., Splicing-dependent RNA polymerase pausing in yeast (2010) Mol. Cell, 40, pp. 582-593 
504 |a Chathoth, K.T., Barrass, J.D., Webb, S., Beggs, J.D., A splicing-dependent transcriptional checkpoint associated with prespliceosome formation (2014) Mol. Cell, 53, pp. 779-790 
504 |a Muñoz, M.J., De La Mata, M., Kornblihtt, A.R., The carboxy terminal domain of RNA polymerase II and alternative splicing (2010) Trends Biochem. Sci., 35, pp. 497-504 
504 |a Gerber, H.P., Hagmann, M., Seipel, K., Georgiev, O., West, M.A., RNA polymerase II C-terminal domain required for enhancer-driven transcription (1995) Nature, 374, pp. 660-662 
504 |a McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II (1997) Genes Dev., 11, pp. 3306-3318 
504 |a Buratowski, S., Progression through the RNA polymerase II CTD cycle (2009) Mol. Cell, 36, pp. 541-546 
504 |a Egloff, S., Dienstbier, M., Murphy, S., Updating the RNA polymerase CTD code: Adding gene-specific layers (2012) Trends Genet., 28, pp. 333-341 
504 |a Heidemann, M., Hintermair, C., Voss, K., Eick, D., Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription (2013) Biochim. Biophys. Acta, 1829, pp. 55-62 
504 |a Hsin, J.P., Manley, J.L., The RNA polymerase IICT Dcoordinates transcription and RNA processing (2012) Genes Dev., 26, pp. 2119-2137 
504 |a Fabrega, C., Shen, V., Shuman, S., Lima, C.D., Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II (2003) Mol. Cell, 11, pp. 1549-1561 
504 |a Kim, M., Krogan, N.J., Vasiljeva, L., Rando, O.J., Nedea, E., The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II (2004) Nature, 432, pp. 517-522 
504 |a Egloff, S., O'reilly, D., Chapman, R.D., Taylor, A., Tanzhaus, K., Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression (2007) Science, 318, pp. 1777-1779 
504 |a Hsin, J.P., Sheth, A., Manley, J.L., RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing (2011) Science, 334, pp. 683-686 
504 |a Rosonina, E., Blencowe, B.J., Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage (2004) RNA, 10, pp. 581-589 
504 |a De La Mata, M., Kornblihtt, A.R., RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20 (2006) Nat. Struct. Mol. Biol., 13, pp. 973-980 
504 |a Huang, Y., Li, W., Yao, X., Lin, Q.J., Yin, J.W., Mediator complex regulates alternative mRNA processing via the MED23 subunit (2012) Mol. Cell, 45, pp. 459-469 
504 |a Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J., Smith, C.W., Co-transcriptional commitment to alternative splice site selection (1998) Nucleic Acids Res., 26, pp. 5568-5572 
504 |a Nogues, G., Muñoz, M.J., Kornblihtt, A.R., Influence of polymerase II processivity on alternative splicing depends on splice site strength (2003) J. Biol. Chem., 278, pp. 52166-52171 
504 |a Ip, J.Y., Schmidt, D., Pan, Q., Ramani, A.K., Fraser, A.G., Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation (2011) Genome Res., 21, pp. 390-401 
504 |a Kadener, S., Cramer, P., Nogues, G., Cazalla, D., De La Mata, M., Antagonistic effects of T-Ag and VP16 reveal a role for RNA Pol II elongation on alternative splicing (2001) EMBO J., 20, pp. 5759-5768 
504 |a Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) PNAS, 106, pp. 4325-4330 
504 |a Shukla, S., Kavak, E., Gregory, M., Imashimizu, M., Shutinoski, B., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing (2011) Nature, 479, pp. 74-79 
504 |a Oberdoerffer, S., A conserved role for intragenic DNA methylation in alternative pre-mRNA splicing (2012) Transcription, 3, pp. 106-109 
504 |a Young, J.I., Hong, E.P., Castle, J.C., Crespo-Barreto, J., Bowman, A.B., Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2 (2005) PNAS, 102, pp. 17551-17558 
504 |a Maunakea, A.K., Chepelev, I., Cui, K., Zhao, K., Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition (2013) Cell Res., 23, pp. 1256-1269 
504 |a Close, P., East, P., Dirac-Svejstrup, A.B., Hartmann, H., Heron, M., DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation (2012) Nature, 484, pp. 386-389 
504 |a Chen, Y., Chafin, D., Price, D.H., Greenleaf, A.L., Drosophila RNA polymerase II mutants that affect transcription elongation (1996) J. Biol. Chem., 271, pp. 5993-5999 
504 |a De La Mata, M., Alonso, C.R., Kadener, S., Fededa, J.P., Blaustein, M., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol. Cell, 12, pp. 525-532 
504 |a Montes, M., Cloutier, A., Sánchez-Hernández, N., Michelle, L., Lemieux, B., TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription (2012) Mol. Cell. Biol., 32, pp. 751-762 
504 |a De La Mata, M., Lafaille, C., Kornblihtt, A.R., First come, first served revisited: Factors affecting the same alternative splicing event have different effects on the relative rates of intron removal (2010) RNA, 16, pp. 904-912 
504 |a Dutertre, M., Sanchez, G., De Cian, M.C., Barbier, J., Dardenne, E., Cotranscriptional exon skipping in the genotoxic stress response (2010) Nat. Struct. Mol. Biol., 17, pp. 1358-1366 
504 |a Solier, S., Barb, J., Zeeberg, B.R., Varma, S., Ryan, M.C., Genome-wide analysis of novel splice variants induced by topoisomerase i poisoning shows preferential occurrence in genes encoding splicing factors (2010) Cancer Res., 70, pp. 8055-8065 
504 |a Dujardin, G., Buratti, E., Charlet-Berguerand, N., Martins De Araujo, M., Mbopda, A., CELF proteins regulate CFTR pre-mRNA splicing: Essential role of the divergent domain of ETR-3 (2010) Nucleic Acids Res., 38, pp. 7273-7285 
504 |a Dujardin, G., Lafaille, C., De La Mata, M., Marasco, L.E., Muñoz, M.J., How slow RNA polymerase II elongation favors alternative exon skipping (2014) Mol. Cell, 54, pp. 683-690 
504 |a Fong, N., Kim, H., Zhou, Y., Ji, X., Qiu, J., Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate (2014) Genes Dev., 28, pp. 2663-2676 
504 |a Krainer, A.R., Maniatis, T., Ruskin, B., Green, M.R., Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro (1984) Cell, 36, pp. 993-1005 
504 |a Padgett, R.A., Hardy, S.F., Sharp, P.A., Splicing of adenovirus RNA in a cell-free transcription system (1983) PNAS, 80, pp. 5230-5234 
504 |a Hernandez, N., Keller, W., Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts (1983) Cell, 35, pp. 89-99 
504 |a Huranova, M., Ivani, I., Benda, A., Poser, I., Brody, Y., The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells (2010) J. Cell Biol., 191, pp. 75-86 
504 |a Simon, J.M., Hacker, K.E., Singh, D., Brannon, A.R., Parker, J.S., Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects (2014) Genome Res., 24, pp. 241-250 
504 |a Zraly, C.B., Dingwall, A.K., The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit (2012) Nucleic Acids Res., 40, pp. 5975-5987 
504 |a Zhou, H.L., Luo, G., Wise, J.A., Lou, H., Regulation of alternative splicing by local histonemodifications: Potential roles for RNA-guided mechanisms (2014) Nucleic Acids Res., 42, pp. 701-713 
504 |a Spies, N., Nielsen, C.B., Padgett, R.A., Burge, C.B., Biased chromatin signatures around polyadenylation sites and exons (2009) Mol. Cell, 36, pp. 245-254 
504 |a Schwartz, S., Meshorer, E., Ast, G., Chromatin organizationmarks exon-intron structure (2009) Nat. Struct. Mol. Biol., 16, pp. 990-995 
504 |a Huang, H., Yu, S., Liu, H., Sun, X., Nucleosome organization in sequences of alternative events in human genome (2012) Biosystems, 109, pp. 214-219 
504 |a Tilgner, H., Nikolaou, C., Althammer, S., Sammeth, M., Beato, M., Nucleosome positioning as a determinant of exon recognition (2009) Nat. Struct. Mol. Biol., 16, pp. 996-1001 
504 |a Chen, W., Luo, L., Zhang, L., The organization of nucleosomes around splice sites (2010) Nucleic Acids Res., 38, pp. 2788-2798 
504 |a Gelfman, S., Burstein, D., Penn, O., Savchenko, A., Amit, M., Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons (2012) Genome Res., 22, pp. 35-50 
504 |a Schwartz, S., Ast, G., Chromatin density and splicing destiny: On the cross-talk between chromatin structure and splicing (2010) EMBO J., 29, pp. 1629-1636 
504 |a Izban, M.G., Luse, D.S., Transcription on nucleosomal templates by RNA polymerase II in vitro: Inhibition of elongation with enhancement of sequence-specific pausing (1991) Genes Dev., 5, pp. 683-696 
504 |a Petesch, S.J., Lis, J.T., Overcoming the nucleosome barrier during transcript elongation (2012) Trends Genet., 28, pp. 285-294 
504 |a Schor, I.E., Lleres, D., Risso, G.J., Pawellek, A., Ule, J., Perturbation of chromatin structure globally affects localization and recruitment of splicing factors (2012) PLOS ONE, 7, p. e48084 
504 |a Keren-Shaul, H., Lev-Maor, G., Ast, G., Pre-mRNA splicing is a determinant of nucleosome organization (2013) PLOS ONE, 8, p. e53506 
504 |a Beckmann, J.S., Trifonov, E.N., Splice junctions follow a 205-base ladder (1991) PNAS, 88, pp. 2380-2383 
504 |a De Conti, L., Baralle, M., Buratti, E., Exon and intron definition in pre-mRNA splicing (2013) Wiley Interdiscip. Rev. RNA, 4, pp. 49-60 
504 |a Clapier, C.R., Cairns, B.R., The biology of chromatin remodeling complexes (2009) Annu. Rev. Biochem., 78, pp. 273-304 
504 |a Mohrmann, L., Verrijzer, C.P., Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes (2005) Biochim. Biophys. Acta, 1681, pp. 59-73 
504 |a Bouazoune, K., Brehm, A., ATP-dependent chromatin remodeling complexes in Drosophila (2006) Chromosome Res., 14, pp. 433-449 
504 |a Zentner, G.E., Tsukiyama, T., Henikoff, S., ISWI and CHD chromatin remodelers bind promoters but act in gene bodies (2013) PLOS Genet., 9, p. e1003317 
504 |a Batsché, E., Yaniv, M., Muchardt, C., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat. Struct. Mol. Biol., 13, pp. 22-29 
504 |a Tyagi, A., Ryme, J., Brodin, D., Östlund Farrants, A.K., Visa, N., SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing (2009) PLOS Genet., 5, p. e1000470 
504 |a Subtil-Rodríguez, A., Reyes, J.C., To cross or not to cross the nucleosome, that is the elongation question (2011) RNA Biol., 8, pp. 389-393 
504 |a Cavellan, E., Asp, P., Percipalle, P., Farrants, A.K., TheWSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription (2006) J. Biol. Chem., 281, pp. 16264-16271 
504 |a Yu, S., Waldholm, J., Bohm, S., Visa, N., Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster (2014) RNA Biol., 11, pp. 134-145 
504 |a Murawska, M., Brehm, A., CHD chromatin remodelers and the transcription cycle (2011) Transcription, 2, pp. 244-253 
504 |a Tai, H.H., Geisterfer, M., Bell, J.C., Moniwa, M., Davie, J.R., CHD1 associates with NCoR and histone deacetylase as well as with RNA splicing proteins (2003) Biochem. Biophys. Res. Commun., 308, pp. 170-176 
504 |a Sims, R.J., III, Millhouse, S., Chen, C.F., Lewis, B.A., Erdjument-Bromage, H., Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing (2007) Mol. Cell, 28, pp. 665-676 
504 |a Hnilicova, J., Hozeifi, S., Duskova, E., Icha, J., Tomankova, T., Stanek, D., Histone deacetylase activity modulates alternative splicing (2011) PLOS ONE, 6, p. e16727 
504 |a Tolstorukov, M.Y., Volfovsky, N., Stephens, R.M., Park, P.J., Impact of chromatin structure on sequence variability in the human genome (2011) Nat. Struct. Mol. Biol., 18, pp. 510-515 
504 |a Gluckman, P.D., Hanson, M.A., Buklijas, T., Low, F.M., Beedle, A.S., Epigenetic mechanisms that underpin metabolic and cardiovascular diseases (2009) Nat. Rev. Endocrinol., 5, pp. 401-408 
504 |a Mehler, M.F., Epigenetic principles and mechanisms underlying nervous system functions in health and disease (2008) Prog. Neurobiol, 86, pp. 305-341 
504 |a Graff, J., Mansuy, I.M., Epigenetic dysregulation in cognitive disorders (2009) Eur. J. Neurosci, 30, pp. 1-8 
504 |a Weidman, J.R., Dolinoy, D.C., Murphy, S.K., Jirtle, R.L., Cancer susceptibility: Epigenetic manifestation of environmental exposuRes (2007) Cancer J., 13, pp. 9-16 
504 |a Cao, F., Townsend, E.C., Karatas, H., Xu, J., Li, L., Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia (2014) Mol. Cell, 53, pp. 247-261 
504 |a Karlic, R., Chung, H.R., Lasserre, J., Vlahovicek, K., Vingron, M., Histone modification levels are predictive for gene expression (2010) PNAS, 107, pp. 2926-2931 
504 |a Hodges, E., Smith, A.D., Kendall, J., Xuan, Z., Ravi, K., High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing (2009) Genome Res., 19, pp. 1593-1605 
504 |a Chodavarapu, R.K., Feng, S., Bernatavichute, Y.V., Chen, P.Y., Stroud, H., Relationship between nucleosome positioning and DNA methylation (2010) Nature, 466, pp. 388-392 
504 |a Hon, G.C., Hawkins, R.D., Ren, B., Predictive chromatin signatures in the mammalian genome (2009) Hum. Mol. Genet., 18, pp. R195-R201 
504 |a Dhami, P., Saffrey, P., Bruce, A.W., Dillon, S.C., Chiang, K., Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution (2010) PLOS ONE, 5, p. e12339 
504 |a Fuchs, G., Hollander, D., Voichek, Y., Ast, G., Oren, M., Co-transcriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate (2014) Genome Res., 24, pp. 1572-1583 
504 |a Zhou, H.L., Hinman, M.N., Barron, V.A., Geng, C., Zhou, G., Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner (2011) PNAS, 108, pp. E627-E635 
504 |a Khan, D.H., Gonzalez, C., Cooper, C., Sun, J.M., Chen, H.Y., RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing (2014) Nucleic Acids Res., 42, pp. 1656-1670 
504 |a Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Misteli, T., Regulation of alternative splicing by histone modifications (2010) Science, 327, pp. 996-1000 
504 |a Llorian, M., Schwartz, S., Clark, T.A., Hollander, D., Tan, L.Y., Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB (2010) Nat. Struct. Mol. Biol., 17, pp. 1114-1123 
504 |a Pradeepa, M.M., Sutherland, H.G., Ule, J., Grimes, G.R., Bickmore, W.A., Psip1/Ledgf p52 binds methylated histoneH3K36 and splicing factors and contributes to the regulation of alternative splicing (2012) PLOS Genet., 8, p. e1002717 
504 |a Loomis, R.J., Naoe, Y., Parker, J.B., Savic, V., Bozovsky, M.R., Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation (2009) Mol. Cell, 33, pp. 450-461 
504 |a Guo, R., Zheng, L., Park, J.W., Lv, R., Chen, H., BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing (2015) Mol. Cell, 205, pp. 298-310 
504 |a Park, G., Gong, Z., Chen, J., Kim, J.E., Characterization of theDOT1Lnetwork: Implications of diverse roles for DOT1L (2010) Protein J., 29, pp. 213-223 
504 |a Yuan, W., Xie, J., Long, C., Erdjument-Bromage, H., Ding, X., Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo (2009) J. Biol. Chem., 18 (284), pp. 15701-15707 
504 |a Gunderson, F.Q., Johnson, T.L., Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly (2009) PLOS Genet., 5, p. e1000682 
504 |a Zhang, Z., Jones, A., Joo, H.Y., Zhou, D., Cao, Y., USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing (2013) Genes Dev., 27, pp. 1581-1595 
504 |a Moehle, E.A., Ryan, C.J., Krogan, N.J., Kress, T.L., Guthrie, C., The yeast SR-like protein Npl3 links chromatin modification to mRNA processing (2012) PLOS Genet., 8, p. e1003101 
504 |a Hino, K., Hirose, T., Possible involvement of snoRNA in alternative splicing regulation (2009) Tanpakushitsu Kakusan Koso, 54, pp. 2049-2054. , In Japanese 
504 |a Chandrasekharan, M.B., Huang, F., Sun, Z.W., Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability (2009) PNAS, 106, pp. 16686-16691 
504 |a Long, L., Thelen, J.P., Furgason, M., Haj-Yahya, M., Brik, A., The U4/U6 recycling factor SART3 has histone chaperone activity and associates with USP15 to regulate H2B deubiquitination (2014) J. Biol. Chem., 289, pp. 8916-8930 
504 |a Gelfman, S., Cohen, N., Yearim, A., Ast, G., DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure (2013) Genome Res., 23, pp. 789-799 
504 |a Choi, J.K., Contrasting chromatin organization of CpG islands and exons in the human genome (2010) Genome Biol., 11, p. R70 
504 |a Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Dynamic changes in the human methylome during differentiation (2010) Genome Res., 20, pp. 320-331 
504 |a Sarraf, S.A., Stancheva, I., Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly (2004) Mol. Cell, 15, pp. 595-605 
504 |a Klose, R.J., Bird, A.P., Genomic DNA methylation: The mark and its mediators (2006) Trends Biochem. Sci., 31, pp. 89-97 
504 |a Boeke, J., Ammerpohl, O., Kegel, S., Moehren, U., Renkawitz, R., The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A (2000) J. Biol. Chem., 275, pp. 34963-34967 
504 |a Piazza, R., Magistroni, V., Mogavero, A., Andreoni, F., Ambrogio, C., Epigenetic silencing of the proapoptotic gene BIM in anaplastic large cell lymphoma through an MeCP2/SIN3a deacetylating complex (2013) Neoplasia, 15, pp. 511-522 
504 |a Long, S.W., Ooi, J.Y., Yau, P.M., Jones, P.L., A brain-derived MeCP2 complex supports a role for MeCP2 in RNA processing (2011) Biosci. Rep., 31, pp. 333-343 
504 |a Huang, L., Fu, H., Lin, C.M., Conner, A.L., Zhang, Y., Aladjem, M.I., Prevention of transcriptional silencing by a replicator-binding complex consisting of SWI/SNF, MeCP1, and hnRNP C1/C2 (2011) Mol. Cell. Biol., 31, pp. 3472-3484 
504 |a Mahajan, M.C., Narlikar, G.J., Boyapaty, G., Kingston, R.E., Weissman, S.M., Heterogeneous nuclear ribonucleoprotein C1/C2, MeCP1, and SWI/SNF form a chromatin remodeling complex at theβ-globin locus control region (2005) PNAS, 102, pp. 15012-15017 
504 |a Zarnack, K., König, J., Tajnik, M., Martincorena, I., Eustermann, S., Direct competition between hnRNPCand U2AF65 protects the transcriptome from the exonization of Alu elements (2013) Cell, 152, pp. 453-466 
504 |a Kwon, S.H., Florens, L., Swanson, S.K., Washburn, M.P., Abmayr, S.M., Workman, J.L., Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II (2010) Genes Dev., 24, pp. 2133-2145 
504 |a Grewal, S.I., Moazed, D., Heterochromatin and epigenetic control of gene expression (2003) Science, 301, pp. 798-802 
504 |a Piacentini, L., Fanti, L., Negri, R., Del Vescovo, V., Fatica, A., Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila (2009) PLOS Genet., 5, p. e1000670 
504 |a Freitag, M., Hickey, P.C., Khlafallah, T.K., Read, N.D., Selker, E.U., HP1is essential forDNAmethylation in Neurospora (2004) Mol. Cell, 13, pp. 427-434 
504 |a Yearim, A., Gelfman, S., Shayevitch, R., Melcer, S., Glaich, O., HP1 is involved in regulating the global impact of DNA methylation on alternative splicing (2015) Cell Rep., 10, pp. 1122-1134 
504 |a Salton, M., Voss, T.C., Misteli, T., Identification by high-throughput imaging of the histone methyltransferaseEHMT2as an epigenetic regulator ofVEGFAalternative splicing (2014) Nucleic Acids Res., pp. 4213662-4213673 
504 |a Alló, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat. Struct. Mol. Biol., 16, pp. 717-724 
504 |a Saint-André, V., Batsché, E., Rachez, C., Muchardt, C., Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons (2011) Nat. Struct. Mol. Biol., 18, pp. 337-344 
504 |a Ameyar-Zazoua, M., Rachez, C., Souidi, M., Robin, P., Fritsch, L., Argonaute proteins couple chromatin silencing to alternative splicing (2012) Nat. Struct. Mol. Biol., 19, pp. 998-1004 
504 |a De Almeida, S.F., Grosso, A.R., Koch, F., Fenouil, R., Carvalho, S., Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36 (2011) Nat. Struct. Mol. Biol., 18, pp. 977-983 
504 |a Kim, S., Kim, H., Fong, N., Erickson, B., Bentley, D.L., Pre-mRNA splicing is a determinant of histone H3K36 methylation (2011) PNAS, 108, pp. 13564-13569 
504 |a Edmunds, J.W., Mahadevan, L.C., Clayton, A.L., Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation (2008) EMBO J., 27, pp. 406-420 
504 |a Luco, R.F., Alló, M., Schor, I.E., Kornblihtt, A.R., Misteli, T., Epigenetics in alternative pre-mRNA splicing (2011) Cell, 144, pp. 16-26 
504 |a Convertini, P., Shen, M., Potter, P.M., Palacios, G., Lagisetti, C., SudemycinEinfluences alternative splicing and changes chromatin modifications (2014) Nucleic Acids Res., 42, pp. 4947-4961 
504 |a Yuan, W., Xie, J., Long, C., Erdjument-Bromage, H., Ding, X., Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo (2009) J. Biol. Chem., 284, pp. 15701-15707 
504 |a Kalsotra, A., Cooper, T.A., Functional consequences of developmentally regulated alternative splicing (2011) Nat. Rev. Genet., 12, pp. 715-729 
504 |a Tollervey, J.R., Wang, Z., Hortobágyi, T., Witten, J.T., Zarnack, K., Analysis of alternative splicing associated with aging and neurodegeneration in the human brain (2011) Genome Res., 21, pp. 1572-1582 
504 |a Witten, J.T., Ule, J., Understanding splicing regulation through RNA splicing maps (2011) Trends Genet., 27, pp. 89-97 
504 |a Gabut, M., Samavarchi-Tehrani, P., Wang, X., Slobodeniuc, V., O'hanlon, D., An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming (2011) Cell, 147, pp. 132-146 
504 |a Ungewitter, E., Scrable, H., δ40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs (2010) Genes Dev., 24, pp. 2408-2419 
504 |a Revil, T., Gaffney, D., Dias, C., Majewski, J., Jerome-Majewska, L.A., Alternative splicing is frequent during early embryonic development in mouse (2010) BMC Genomics, 11, p. 399 
504 |a Xu, X., Yang, D., Ding, J.H., Wang, W., Chu, P.H., ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle (2005) Cell, 120, pp. 59-72 
504 |a Preitner, N., Quan, J., Nowakowski, D.W., Hancock, M.L., Shi, J., APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly (2014) Cell, 158, pp. 368-382 
504 |a Jiang, H., Shukla, A., Wang, X., Chen, W.Y., Bernstein, B.E., Roeder, R.G., Role forDpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains (2011) Cell, 144, pp. 513-525 
504 |a Su, W.L., Modrek, B., Guha Thakurta, D., Edwards, S., Shah, J.K., Exon and junction microarrays detect widespread mouse strain- and sex-bias expression differences (2008) BMC Genomics, 9, p. 273 
504 |a Blekhman, R., Marioni, J.C., Zumbo, P., Stephens, M., Gilad, Y., Sex-specific and lineage-specific alternative splicing in primates (2010) Genome Res., 20, pp. 180-189 
504 |a Salz, H.K., Sex determination in insects: A binary decision based on alternative splicing (2011) Curr. Opin. Genet. Dev., 21, pp. 395-400 
504 |a Wang, G.S., Cooper, T.A., Splicing in disease: Disruption of the splicing code and the decoding machinery (2007) Nat. Rev. Genet., 8, pp. 749-761 
504 |a Baralle, D., Lucassen, A., Buratti, E., Missed threads. The impact of pre-mRNA splicing defects on clinical practice (2009) EMBO Rep., 10, pp. 810-816 
504 |a Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Alternative isoform regulation in human tissue transcriptomes (2008) Nature, 456, pp. 470-476 
504 |a Merkin, J., Russell, C., Chen, P., Burge, C.B., Evolutionary dynamics of gene and isoform regulation in mammalian tissues (2012) Science, 338, pp. 1593-1599 
504 |a Reyes, A., Anders, S., Weatheritt, R.J., Gibson, T.J., Steinmetz, L.M., Huber, W., Drift and conservation of differential exon usage across tissues in primate species (2013) PNAS, 110, pp. 15377-15382 
504 |a Penalva, L.O., Sanchez, L., RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation (2003) Microbiol. Mol. Biol. Rev., 67, pp. 343-359 
504 |a Grosso, A.R., Gomes, A.Q., Barbosa-Morais, N.L., Caldeira, S., Thorne, N.P., Tissue-specific splicing factor gene expression signatuRes (2008) Nucleic Acids Res., 36, pp. 4823-4832 
504 |a Sun, H., Wu, J., Wickramasinghe, P., Pal, S., Gupta, R., Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq (2011) Nucleic Acids Res., 39, pp. 190-201 
504 |a Pecci, A., Viegas, L.R., Barañao, J.L., Beato, M., Promoter choice influences alternative splicing and determines the balance of isoforms expressed from the mouse bcl-X gene (2001) J. Biol. Chem., 276, pp. 21062-21069 
504 |a Li, B., Carey, M., Workman, J.L., The role of chromatin during transcription (2007) Cell, 128, pp. 707-719 
504 |a Schor, I.E., Fiszbein, A., Petrillo, E., Kornblihtt, A.R., Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation (2013) EMBO J., 32, pp. 2264-2274 
504 |a Kucharski, R., Maleszka, J., Foret, S., Maleszka, R., Nutritional control of reproductive status in honeybees via DNA methylation (2008) Science, 319, pp. 1827-1830 
504 |a Foret, S., Kucharski, R., Pellegrini, M., Feng, S., Jacobsen, S.E., DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees (2012) PNAS, 109, pp. 4968-4973 
504 |a Mercer, T.R., Edwards, S.L., Clark, M.B., Neph, S.J., Wang, H., DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements (2013) Nat. Genet., 45, pp. 852-859 
504 |a Mayshar, Y., Rom, E., Chumakov, I., Kronman, A., Yayon, A., Benvenisty, N., Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal (2008) Stem Cells, 26, pp. 767-774 
504 |a Salomonis, N., Schlieve, C.R., Pereira, L., Wahlquist, C., Colas, A., Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation (2010) PNAS, 107, pp. 10514-10519 
504 |a Cheong, C.Y., Lufkin, T., Alternative splicing in self-renewal of embryonic stem cells (2011) Stem Cells Int, 2011, p. 560261 
504 |a Ohta, S., Nishida, E., Yamanaka, S., Yamamoto, T., Global splicing pattern reversion during somatic cell reprogramming (2013) Cell Rep., 5, pp. 357-366 
504 |a Lu, X., Goke, J., Sachs, F., Jacques, P.E., Liang, H., SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells (2013) Nat. Cell Biol., 15, pp. 1141-1152 
504 |a Bittencourt, D., Dutertre, M., Sanchez, G., Barbier, J., Gratadou, L., Auboeuf, D., Cotranscriptional splicing potentiates the mRNA production from a subset of estradiol-stimulated genes (2008) Mol. Cell. Biol., 28, pp. 5811-5824 
504 |a Iwasaki, T., Chin, W.W., Ko, L., Identification and characterization of RRM-containing coactivator activator (CoAA) as TRBP-interacting protein, and its splice variant as a coactivator modulator (CoAM) (2001) J. Biol. Chem., 276, pp. 33375-33383 
504 |a Fischle, W., Tseng, B.S., Dormann, H.L., Ueberheide, B.M., Garcia, B.A., Regulation of HP1- chromatin binding by histone H3 methylation and phosphorylation (2005) Nature, 438, pp. 1116-1122 
504 |a Hirota, T., Lipp, J.J., Toh, B.H., Peters, J.M., Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin (2005) Nature, 438, pp. 1176-1180 
504 |a Muñoz, M.J., Perez Santangelo, M.S., Paronetto, M.P., De La Mata, M., Pelisch, F., DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation (2009) Cell, 137, pp. 708-720 
504 |a Kim, E., Magen, A., Ast, G., Different levels of alternative splicing among eukaryotes (2007) Nucleic Acids Res., 35, pp. 125-131 
504 |a Xiao, X., Wang, Z., Jang, M., Burge, C.B., Coevolutionary networks of splicing cis-regulatory elements (2007) PNAS, 104, pp. 18583-18588 
504 |a Xiao, X., Wang, Z., Jang, M., Nutiu, R., Wang, E.T., Burge, C.B., Splice site strength-dependent activity and genetic buffering by poly-G runs (2009) Nat. Struct. Mol. Biol., 16, pp. 1094-1100 
504 |a Goren, A., Ram, O., Amit, M., Keren, H., Lev-Maor, G., Comparative analysis identifies exonic splicing regulatory sequences - The complex definition of enhancers and silencers (2006) Mol. Cell, 22, pp. 769-781 
504 |a Sorek, R., Ast, G., Intronic sequences flanking alternatively spliced exons are conserved between human and mouse (2003) Genome Res., 13, pp. 1631-1637 
504 |a Xing, Y., Lee, C., Alternative splicing and RNA selection pressure-evolutionary consequences for eukaryotic genomes (2006) Nat. Rev. Genet., 7, pp. 499-509 
504 |a Fairbrother, W.G., Yeh, R.F., Sharp, P.A., Burge, C.B., Predictive identification of exonic splicing enhancers in human genes (2002) Science, 297, pp. 1007-1013 
504 |a Sugnet, C.W., Srinivasan, K., Clark, T.A., O'brien, G., Cline, M.S., Unusual intron conservation near tissue-regulated exons found by splicing microarrays (2006) PLOS Comput. Biol., 2, p. e4 
504 |a Sorek, R., Ast, G., Graur, D., Alu-containing exons are alternatively spliced (2002) Genome Res., 12, pp. 1060-1067 
504 |a Lev-Maor, G., Sorek, R., Shomron, N., Ast, G., The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons (2003) Science, 300, pp. 1288-1291 
504 |a Sorek, R., Lev-Maor, G., Reznik, M., Dagan, T., Belinky, F., Minimal conditions for exonization of intronic sequences: 5′ splice site formation in Alu exons (2004) Mol. Cell, 14, pp. 221-231 
504 |a Magen, A., Ast, G., The importance of being divisible by three in alternative splicing (2005) Nucleic Acids Res., 33, pp. 5574-5582 
504 |a Sela, N., Mersch, B., Gal-Mark, N., Lev-Maor, G., Hotz-Wagenblatt, A., Ast, G., Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome (2007) Genome Biol., 8, p. R127 
504 |a Lev-Maor, G., Goren, A., Sela, N., Kim, E., Keren, H., The "alternative" choice of constitutive exons throughout evolution (2007) PLOS Genet., 3, p. e203 
504 |a Koren, E., Lev-Maor, G., Ast, G., The emergence of alternative 3′ and 5′ splice site exons from constitutive exons (2007) PLOS Comput. Biol., 3, p. e95 
504 |a Ram, O., Ast, G., SR proteins: A foot on the exon before the transition from intron to exon definition (2007) Trends Genet., 23, pp. 5-7 
504 |a Hertel, K.J., Combinatorial control of exon recognition (2008) J. Biol. Chem., 283, pp. 1211-1215 
504 |a Niu, D.K., Exon definition as a potential negative force against intron losses in evolution (2008) Biol. Direct, 3, p. 46 
520 3 |a Alternative precursor messenger RNA (pre-mRNA) splicing plays a pivotal role in the flow of genetic information from DNA to proteins by expanding the coding capacity of genomes. Regulation of alternative splicing is as important as regulation of transcription to determine cell- and tissue-specific features, normal cell functioning, and responses of eukaryotic cells to external cues. Its importance is confirmed by the evolutionary conservation and diversification of alternative splicing and the fact that its deregulation causes hereditary disease and cancer. This review discusses the multiple layers of cotranscriptional regulation of alternative splicing in which chromatin structure, DNA methylation, histone marks, and nucleosome positioning play a fundamental role in providing a dynamic scaffold for interactions between the splicing and transcription machineries. We focus on evidence for how the kinetics of RNA polymerase II (RNAPII) elongation and the recruitment of splicing factors and adaptor proteins to chromatin components act in coordination to regulate alternative splicing. Copyright © 2015 by Annual Reviews. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Israel Science Foundation, ISF, 142/13 
536 |a Detalles de la financiación: Israel Cancer Association, ICA, 20140091 
536 |a Detalles de la financiación: Israel Science Foundation, ISF, 757/12 
593 |a Sackler Medical School, Tel Aviv University, Tel Aviv, 69978, Israel 
593 |a Instituto de Fisiología, Biología Molecular y Neurociencias, Departamento de Fisiología, Biología Molecular y Celular, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a ALTERNATIVE SPLICING 
690 1 0 |a CHROMATIN ORGANIZATION 
690 1 0 |a HISTONE MODIFICATIONS 
690 1 0 |a MOLECULAR EVOLUTION 
690 1 0 |a NUCLEOSOME POSITIONING 
690 1 0 |a TRANSCRIPTION 
690 1 0 |a ADAPTOR PROTEIN 
690 1 0 |a HISTONE 
690 1 0 |a RNA POLYMERASE II 
690 1 0 |a CHROMATIN 
690 1 0 |a NUCLEOSOME 
690 1 0 |a ALTERNATIVE RNA SPLICING 
690 1 0 |a CHROMATIN STRUCTURE 
690 1 0 |a DENSITY 
690 1 0 |a DNA METHYLATION 
690 1 0 |a HISTONE MODIFICATION 
690 1 0 |a HUMAN 
690 1 0 |a KINETICS 
690 1 0 |a MACHINE 
690 1 0 |a NONHUMAN 
690 1 0 |a NUCLEOSOME 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a REVIEW 
690 1 0 |a ANIMAL 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a CHROMATIN 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENETIC TRANSCRIPTION 
690 1 0 |a METABOLISM 
690 1 0 |a PROTEIN PROCESSING 
690 1 0 |a EUKARYOTA 
690 1 0 |a ALTERNATIVE SPLICING 
690 1 0 |a ANIMALS 
690 1 0 |a CHROMATIN 
690 1 0 |a DNA METHYLATION 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a HISTONES 
690 1 0 |a HUMANS 
690 1 0 |a MODELS, GENETIC 
690 1 0 |a NUCLEOSOMES 
690 1 0 |a PROTEIN PROCESSING, POST-TRANSLATIONAL 
690 1 0 |a TRANSCRIPTION, GENETIC 
700 1 |a Schor, I.E. 
700 1 |a Ast, G. 
700 1 |a Kornblihtt, A.R. 
773 0 |d Annual Reviews Inc., 2015  |g v. 84  |h pp. 165-198  |p Annu. Rev. Biochem.  |x 00664154  |w (AR-BaUEN)CENRE-953  |t Annual Review of Biochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930716439&doi=10.1146%2fannurev-biochem-060614-034242&partnerID=40&md5=499d63f1a4411d27839d85d38cea58c8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1146/annurev-biochem-060614-034242  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00664154_v84_n_p165_Naftelberg  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00664154_v84_n_p165_Naftelberg  |y Registro en la Biblioteca Digital 
961 |a paper_00664154_v84_n_p165_Naftelberg  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85740