Characterization of Lactobacillus carbohydrate fermentation activity using immobilized cell technique

A microbial bioreactor based on calcium alginate immobilized Lactobacillus cells coupled to a pH electrode was developed for quantitative determination of carbohydrate fermentation activity. A high biomass (1010 cfu mL-1) and particular pregrowth conditions were needed. Reduction of catabolite repre...

Descripción completa

Detalles Bibliográficos
Autor principal: Cortón, E.
Otros Autores: Piuri, M., Battaglini, Fernando, Ruzal, S.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2000
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08950caa a22010457a 4500
001 PAPER-2454
003 AR-BaUEN
005 20241007100241.0
008 190411s2000 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0033963796 
030 |a BIPRE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cortón, E. 
245 1 0 |a Characterization of Lactobacillus carbohydrate fermentation activity using immobilized cell technique 
260 |c 2000 
270 1 0 |m Ruzal, S.M.; Departamento de Quimica Biologica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 4 piso (1428) Buenos Aires, Argentina 
504 |a Vignolo, G.M., Pesce De Ruiz Holgado, A., Oliver, G., Acid production and proteolytic activity of Lactobacillus strains isolated from dry sausages (1988) J. Food Prot., 51, pp. 481-484 
504 |a Olsen, N.F., The impact of lactic acid bacteria on cheese flavor (1990) FEMS Microbiol. Rev., 87, pp. 131-148 
504 |a Schillinger, U., Lucke, E.K., Identification of lactobacilli from meat and meat products (1987) Food Microbiol., 4, pp. 199-208 
504 |a Lauret, R., Morel-Deville, F., Berthier, F., Champomier-Verges, M., Postma, P., Ehrlich, D., Zagorec, M., Carbohydrate utilization in Lactobacillus sake (1996) Appl. Environ. Microbiol., 62, pp. 1922-1927 
504 |a Riedel, K., Lehmann, M., Adler, K., Kunze, G., Physiological characterization of a microbial sensor containing the yeast Arxula adeninivorans LS3 (1997) Antonie van Leewenhoek, 71, pp. 345-351 
504 |a Riedel, C., Kunze, G., Rapid physiological characterization of microorganisms by biosensor technique (1997) Microbiol. Res., 152, pp. 233-237 
504 |a Champagne, C.P., Lacroix, C., Sodini-Gallot, I., Immobilized cell technologies for dairy industry (1994) Crit. Rev. Biotechnol., 14, pp. 109-134 
504 |a Sodini, I., Boquien, C.Y., Corrieu, G., Lacroix, C., Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing (1997) J. Ind. Microbiol. Biotechnol., 18, pp. 56-61 
504 |a Senthuran, A., Senthuran, V., Mattiasson, B., Kaul, R., Lactic acid fermentation in a recycle batch reactor using immobilized lactobacillus casei (1997) Biotechnol. Bioeng., 55, pp. 841-853 
504 |a Øyaas, J., Storro, I., Levine, D.W., Uptake of lactose and continuous lactic acid fermentation by entrapped nongrowing lactobacillus helveticus in whey permeate (1996) Appl. Microbiol. Biotechnol., 46, pp. 240-249 
504 |a Saier M.H., Jr., Chauvaux, S., Cook, G.M., Deutscher, J., Paulsen, I.T., Reizer, J., Ye, J.J., Catabolite repression and inducer control in Gram-positive bacteria (1996) Microbiology, 142, pp. 217-230 
504 |a Saier M.H., Jr., Regulatory interactions controlling carbon metabolism: An overview (1996) Res. Microbiol., 147, pp. 439-447 
504 |a Saier M.H., Jr., Crasnier, M., Inducer exclusion and the regulation of sugar transport (1996) Res. Microbiol., 147, pp. 482-489 
504 |a Veyrat, A., Monedero, V., Perez-Martinez, G., Glucose transport by the phosphoenolpyruvate: Mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression (1994) Microbiology, 140, pp. 1141-1149 
504 |a Thompson, J., Sugar transport in lactic acid bacteriain (1990) Sugar Transport and Metabolism in Gram-positive Bacteria, pp. 13-38. , Reizer, J., Peterkofsky, A., Eds.; Ellis Horwood Limited Publishers: Chichester 
504 |a Kandler, O., Weiss, N., Regular, nonsporing Gram-positive rods (1986) Bergey's Manual of Systematic Bacteriology, 2. , Holt, J. G., Ed.; Williams & Wilkins Company: Baltimore; Section 13 
504 |a Romano, A.H., Brino, G., Peterkofsky, A., Reizer, J., Regulation of β-galactosidase transport and accumulation in heterofermentative lactic acid bacteria (1987) J. Bacteriol., 169, pp. 5589-5596 
504 |a Ye, J.J., Neal, J.W., Cui, X., Reizer, J., Saier M.H., Jr., Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis (1994) J. Bacteriol., 176, pp. 3484-3492 
506 |2 openaire  |e Política editorial 
520 3 |a A microbial bioreactor based on calcium alginate immobilized Lactobacillus cells coupled to a pH electrode was developed for quantitative determination of carbohydrate fermentation activity. A high biomass (1010 cfu mL-1) and particular pregrowth conditions were needed. Reduction of catabolite repression by monosaccharides was achieved by pregrowth in lactose. The evolution of acid production in a continuous flow-stopped flow bioreactor was monitored for different sugar solutions in contact with the immobilized bacteria. The resulting slopes (ΔmV/Δt) were used to quantify the fermentation capability for a defined sugar related to that of glucose, which was taken as 100%. The procedure is simple, being based on pH variation that can give quantitative results compared to other reported techniques for carbohydrate fermentation pattern from which only qualitative results are obtained. In addition, it offers reduction in time and costs and is a suitable tool for the rapid analysis of isolated strains and in studies of modifications of sugar metabolism in mutants. A microbial bioreactor based on calcium alginate immobilized Lactobacillus cells coupled to a pH electrode was developed for quantitative determination of carbohydrate fermentation activity. A high biomass (1010 cfu mL-1) and particular pregrowth conditions were needed. Reduction of catabolite repression by monosaccharides was achieved by pregrowth in lactose. The evolution of acid production in a continuous flow-stopped flow bioreactor was monitored for different sugar solutions in contact with the immobilized bacteria. The resulting slopes (ΔmV/Δt) were used to quantify the fermentation capability for a defined sugar related to that of glucose, which was taken as 100%. The procedure is simple, being based on pH variation that can give quantitative results compared to other reported techniques for carbohydrate fermentation pattern from which only qualitative results are obtained. In addition, it offers reduction in time and costs and is a suitable tool for the rapid analysis of isolated strains and in studies of modifications of sugar metabolism in mutants.  |l eng 
593 |a Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, 4 piso, (1428) Buenos Aires, Argentina 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
690 1 0 |a CALCIUM ALGINATE 
690 1 0 |a CATABOLITE 
690 1 0 |a LACTOBACILLUS 
690 1 0 |a LACTOSE 
690 1 0 |a MONOSACCHARIDES 
690 1 0 |a BACTERIAL MUTANT 
690 1 0 |a BIOMASS 
690 1 0 |a BIOREACTOR 
690 1 0 |a CARBOHYDRATE 
690 1 0 |a CATABOLITE REPRESSION 
690 1 0 |a COLONY FORMING UNIT 
690 1 0 |a ELECTRODE 
690 1 0 |a FERMENTATION 
690 1 0 |a IMMOBILIZED BIOMASS 
690 1 0 |a IMMOBILIZED CELL CULTURE 
690 1 0 |a LACTOSE 
690 1 0 |a QUANTITATIVE ANALYSIS 
690 1 0 |a BACTERIA 
690 1 0 |a BIOMASS 
690 1 0 |a BIOREACTORS 
690 1 0 |a CALCIUM COMPOUNDS 
690 1 0 |a CARBOHYDRATES 
690 1 0 |a CELL IMMOBILIZATION 
690 1 0 |a GLUCOSE 
690 1 0 |a GROWTH KINETICS 
690 1 0 |a METABOLISM 
690 1 0 |a REDUCTION 
690 1 0 |a FERMENTATION 
690 1 0 |a BIOMASS 
690 1 0 |a BIOREACTORS 
690 1 0 |a BIOTECHNOLOGY 
690 1 0 |a CARBOHYDRATE METABOLISM 
690 1 0 |a CELLS, IMMOBILIZED 
690 1 0 |a FERMENTATION 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a LACTOBACILLUS 
690 1 0 |a LACTOBACILLUS CASEI 
690 1 0 |a SPECIES SPECIFICITY 
690 1 0 |a BACTERIA (MICROORGANISMS) 
690 1 0 |a LACTOBACILLUS 
700 1 |a Piuri, M. 
700 1 |a Battaglini, Fernando 
700 1 |a Ruzal, S.M. 
773 0 |d 2000  |g v. 16  |h pp. 59-63  |k n. 1  |p Biotechnol. Prog.  |x 87567938  |w (AR-BaUEN)CENRE-147  |t Biotechnology Progress 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033963796&doi=10.1021%2fbp9901217&partnerID=40&md5=c7fa019cb77227abf639929b43b48cac  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/bp9901217  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_87567938_v16_n1_p59_Corton  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_87567938_v16_n1_p59_Corton  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_87567938_v16_n1_p59_Corton  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion