Chemical shift trends in light atoms

In this chapter, the qualitative model described in Chapter 2 is applied to show systematic rationalizations in terms of chemical interactions that define well-known trends for chemical shifts corresponding to 13C, 15N, 17O, and 19F isotopes. The theoretical fundamentals for this approach are given...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Contreras, Rubén Horacio
Otros Autores: Tormena, C.F, Ducati, L.C, Llorente, T.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09655caa a22007697a 4500
001 PAPER-24384
003 AR-BaUEN
005 20250204090408.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84879002249 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Contreras, Rubén Horacio 
245 1 0 |a Chemical shift trends in light atoms 
260 |b Elsevier B.V.  |c 2013 
270 1 0 |m Contreras, R.H.; Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBAArgentina 
504 |a Witanowski, M., Stefaniak, L., Webb, G.A., Nitrogen NMR Spectroscopy, Ann. Reps (1986) NMR Spectrosc, 18, pp. 487-495 
504 |a Fifolt, M.J., Sojka, S.A., Wolfe, R.A., Hojnicki, D.S., A Chemical Shift Additivity Method for the Prediction of Fluorine-19 Chemical Shifts in Fluoroaromatic Compounds (1989) J. Org. Chem., 54, p. 3019 
504 |a Reed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chem Rev, 88, p. 899 
504 |a Weinhold, F., Natural bond orbital methods (1998) Encyclopedia of computational chemistry, pp. 3:1792. , Wiley, New York, P. Schleyer (Ed.) 
504 |a Sanders, L.K., Oldfield, E., Theoretical investigation of 19F NMR chemical shielding tensors in fluorobenzenes (2001) J Phys Chem A, 105, p. 8098 
504 |a Nudelman, N.S., Cerdeira, S.B., 1H and 13C NMR studies of substituted nitropyridines and nitrobenzenes (1986) Magn Reson Chem, 24, p. 507 
504 |a Stefaniak, L., Roberts, J.D., Witanowski, M., Webb, G.A., 15NMR Spectroscopy of azines (1984) Org. Magn. Reson, 22, p. 201 
504 |a Della, E.W., Lochert, I.J., Peralta, J.E., Contreras, R.H., A DFT/GIAO/NBO and experimental study of 13C SCSs in 1-X-biciclo[1.1.1]pentanes (2000) Magn Reson Chem, 38, p. 395 
504 |a Jameson, C.J., Fluorine (1987) Multinuclear NMR, p. 437. , Plenum Press, New York, [chapter 16], J. Mason (Ed.) 
504 |a Lochert, I.J., Synthesis and nuclear magnetic resonance study of bridgehead substituted bicycle[1.1.1]pentanes PhD thesis, presented to the Department of Chemistry, Faculty of Science and Engineering, Flinders University of South Australia, June 1996; Bradsshaw, T.K., Hine, P.T., Della, E.W., 19F chemical shifts of bridge-head fluorides (1981) Org Magn Reson, 16, p. 26 
504 |a Mallory, F.B., Mallory, C.W., Butler, K.E., Lewis, M.B., Xia, A.Q., Luzik, E.D., Nuclear spin-spin coupling via nonbonded interactions. 8. The distance dependence of through-space fluorine-fluorine coupling (2000) J Am Chem Soc, 122, p. 4108 
504 |a Gribble, G.W., Keavy, D.J., Olson, E.R., Rae, I.D., Staff, A., Herr, T.E., Fluorine deshielding in the proximity of a methyl group. An experimental and theoretical study (1991) Magn Reson Chem, 29, p. 422 
504 |a (2011), http://daltonprogram.org, Dalton2011, A Molecular Electronic Structure Program, Release see; Vilcachagua, J.D., Ducati, L.C., Rittner, R., Contrera, R.H., Tormena, C.F., Experimental, SOPPA(CCSD) and DFT analysis of substituent effects on NMR 1JCF coupling constants in fluorobenzene derivatives (2011) J Phys Chem A, 115, p. 7762 
504 |a Kreutz, C., Micura, R., Investigations on fluorine-labeled ribonucleic acids by 19F NMR spectroscopy (2008) Modified nucleosides: in biochemistry, biotechnology and medicine, , Wiley-VCH, Weinheim, P. Herdewijn (Ed.) 
504 |a Contreras, R.H., Biekofsky, R.R., Esteban, A.L., Diez, E., Fabián, J.S., Carbonyl 17O chemical shift in the proximity of a methyl group in amides: an experimental and theoretical study (1996) Magn Reson Chem, 34, p. 447 
504 |a Forsyth, D.A., Osterman, V.M., DeMember, D.J.R., NMR chemical shifts and NMR isotope shift evidence for the influence of non-bonded interactions on charge distribution in α,β-unsaturated methoxycarbenium ions (1985) J Am Chem Soc, 107, p. 818 
504 |a Chazin, W.J., Colebrokk, L.D., A proton spin-lattice relaxation pathway analysis of conformational preferences of aryl and enol ethers in some cinchona and morphine alkaloids (1986) Can J Chem, 64, p. 2220 
504 |a Biekofsky, R.R., Pomilio, A.B., Contreras, R.H., De Kowalewski, D.G., Facelli, J.C., Experimental and theoretical study of the methoxy group conformational effect on 13C chemical shifts in ortho-substituted anisoles (1989) Magn Reson Chem, 27, p. 158 
504 |a Facelli, J.C., Orendt, A.M., Jiang, Y.J., Puigmire, R.J., Grant, D.M., Carbon-13 chemical shift tensors and molecular conformation in anisole (1996) J Phys Chem A, 100, p. 8268 
504 |a De Kowalewski, D.G., Contreras, R.H., Engelman, A.R., Facelli, J.C., Durán, J.C., Transmission mechanisms of inter-proton long-range couplings in substituted anisoles (1981) Org Magn Reson, 17, p. 199 
504 |a de Kowalewski, D.G., Kowalewski, V.J., Botek, E., Contreras, R.H., Facelli, J.C., Experimental and theoretical study of the ethoxy group conformational effect on 13C chemical shifts in ortho-substituted phenetols (1997) Magn Reson Chem, 35, p. 351 
504 |a Joseph-Nathan, J., García Martínez, C., Morales Ríos, M.S., Dependence of 13C NMR methoxy substituent chemical shift values on π-bond orders of fused aromatic compounds (1990) Magn Reson Chem, 28, p. 311 
504 |a Sherwood, M.H., Facelli, J.C., Alderman, D.W., Grant, D.M., Carbon-13 chemical shift tensors in polycyclic aromatic compounds. 2. Single-crystal study of naphthalene (1991) J Am Chem Soc, 113, p. 750 
504 |a Seita, J., Sandström, J., Drakenberg, T., Carbon-13 NMR studies of substituted naphthalenes. I-complete assignments of the 13C chemical shifts with the aid of deuterated derivatives (1978) Org Magn Reson, 11, p. 239 
504 |a Kitching, W., Bullpitt, M., Gartshore, D., Adcock, W., Khor, T.C., Doddrell, D., Carbon-13 nuclear magnetic resonance examination of naphthalene derivatives. Assignments and analysis of substituent chemical shifts (1977) J Org Chem, 42, p. 2411 
504 |a Peralta, J.E., Contreras, R.H., Taurian, O.E., De Kowalewski, D.G., Kowalewski, V.J., Methyl β-substituent effect on NMR 17O chemical shifts in two-coordinated oxygen atoms: DFT GIAO and NBO, and experimental studies (1999) Magn Reson Chem, 37, p. 31. , and references cited therein 
504 |a Delseth, C., Kintzinger, J.P., Résonance magnetique nucléaire de 13C et 17O d'éther aliphatiques. Effets gamma entre les atomes d'oxygène et de carbone (1978) Helv Chim Acta, 61, p. 1327 
504 |a Kalabin, G.A., Kushnarev, D.F., Valeyev, R.B., Trofimov, B.A., Fedotov, M.A., 17O NMR investigation of p, π-interactions in α, β-unsaturated and aromatic ethers (1982) Org. Magn. Reson., 18, p. 1 
504 |a Rae, I.D., Weigold, J.A., Contreras, R.H., Biekofsky, R.R., Analysis of long-range through space couplings via an intramolecular hydrogen bond (1993) Magn Reson Chem, 31, p. 836 
504 |a Jameson, C.J., Fluorine (1987) Multinuclear NMR, p. 439. , Plenum Press, New York, [chapter 16], J. Mason (Ed.) 
506 |2 openaire  |e Política editorial 
520 3 |a In this chapter, the qualitative model described in Chapter 2 is applied to show systematic rationalizations in terms of chemical interactions that define well-known trends for chemical shifts corresponding to 13C, 15N, 17O, and 19F isotopes. The theoretical fundamentals for this approach are given in Chapter 5. They could be a bit difficult to follow for readers who do not have a good training in physics and mathematics. However, this difficulty was intended to be overcome by resorting in Chapter 2 to describing this approach and providing "physically" several mathematical expressions and describing them in terms of familiar concepts employed frequently in different branches of chemistry and structural biology. The authors believe that once readers understand how easy this approach is and how it facilitates building pictorial representations of how several chemical interactions can be detected by means of high-resolution NMR spectroscopy, the initial problems will be overcome very soon. © 2013 Elsevier B.V.  |l eng 
593 |a Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA, Argentina 
593 |a Chemistry Institute, University of Campinas, Campinas, Sao Paulo, Brazil 
690 1 0 |a DIAMAGNETIC 
690 1 0 |a EIGENVALUES 
690 1 0 |a EIGENVECTORS 
690 1 0 |a GEOMETRIC EFFECT 
690 1 0 |a MESOMERIC EFFECT 
690 1 0 |a NUCLEAR SHIELDING TENSOR 
690 1 0 |a PARAMAGNETIC CONTRIBUTIONS 
690 1 0 |a STERIC EFFECT 
700 1 |a Tormena, C.F. 
700 1 |a Ducati, L.C. 
700 1 |a Llorente, T. 
773 0 |d Elsevier B.V., 2013  |g v. 3  |h pp. 315-345  |k n. 1  |p Sci. Technol. At. Mol. Condens. Matter Biol. Syst.  |x 18754023  |t Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879002249&doi=10.1016%2fB978-0-444-59411-2.00010-1&partnerID=40&md5=94191af7edddd63eb969b07c1374a0dc  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/B978-0-444-59411-2.00010-1  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_18754023_v3_n1_p315_Contreras  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18754023_v3_n1_p315_Contreras  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_18754023_v3_n1_p315_Contreras  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion