Coupling between transcription and alternative splicing

The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Schor, I.E
Otros Autores: Gómez Acuña, L.I, Kornblihtt, A.R, Wu J.Y
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 23153caa a22017537a 4500
001 PAPER-24297
003 AR-BaUEN
005 20230518205608.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84876583429 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Schor, I.E. 
245 1 0 |a Coupling between transcription and alternative splicing 
260 |c 2013 
270 1 0 |m Kornblihtt, A.R.; Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, Universidad de Buenos Aires, 20 Piso, Buenos Aires 1428, Argentina; email: ark@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Srebrow, A., Kornblihtt, A.R., The connection between splicing and cancer (2006) J Cell Sci, 119 (13), pp. 2635-26411 
504 |a Muñoz, M.J., Perez Santángelo, M.S., Paronetto, M.P., De La Mata, M., Pelisch, F., Boireau, S., Glover-Cutter, K., Kornblihtt, A.R., DNA damage regulates alternative splicing through inhibition of RNA Polymerase II elongation (2009) Cell, 137, pp. 708-7200 
504 |a Berget, S.M., Exon recognition in vertebrate splicing (1995) J Biol Chem, 270 (6), pp. 2411-24144 
504 |a Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Burge, C.B., Alternative isoformregulation in human tissue transcriptomes (2008) Nature, 456 (27), pp. 470-4766 
504 |a Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J., Deep surveying of alternative splicing complexity in the human transcriptome by high throughput sequencing (2008) Nat Genet, 40 (12), pp. 1413-14155 
504 |a Ermakova, E.O., Nurtdinov, R.N., Gelfand, M.S., Fast rate of evolution in alternative spliced coding regions of mammalian genes (2006) BMC Genomics, 7, pp. 84-933 
504 |a Smith, C.W., Valcárcel, J., Alternative pre-mRNA splicing: The logic of combinatorial control (2000) Trends Biochem Sci, 25 (8), pp. 381-3888 
504 |a Cáceres, J.F., Kornblihtt, A.R., Alternative splicing: Multiple control mechanisms and involvement in human disease (2002) Trends Genet, 18, pp. 186-1933 
504 |a Black, D.L., Mechanisms of alternative pre-messenger RNA splicing (2003) Annu Rev Biochem, 72, pp. 291-3366 
504 |a Sharp, P.A., Split genes and RNA splicing (1994) Cell, 77 (6), pp. 805-8155 
504 |a Kornblihtt, A.R., Pesce, C.G., Alonso, C.R., The fibronectin gene as a model for splicing and transcription studies (1996) FASEB J, 10 (2), pp. 248-2577 
504 |a Fededa, J.P., Petrillo, E., Gelfand, M.S., A polar mechanism coordinates different regions of alternative splicing within a single gene (2005) Mol Cell, 19 (3), pp. 393-4044 
504 |a Lenasi, T., Peterlin, B.M., Dovc, P., Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1 (2006) RNA, 12 (3), pp. 498-5077 
504 |a Romano, M., Marcucci, R., Baralle, F.E., Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene (2001) Nucleic Acids Res, 29 (4), pp. 886-8944 
504 |a Bentley, D., The mRNA assembly line: Transcription and processing machines in the same factory (2002) Curr Opin Cell Biol, 14 (3), pp. 336-3422 
504 |a Bentley, D.L., Rules of engagement: Co-transcriptional recruitment of pre-mRNA processing factors (2005) Curr Opin Cell Biol, 17 (3), pp. 251-2566 
504 |a Maniatis, T., Reed, R., An extensive network of coupling among gene expression machines (2002) Nature, 416 (6880), pp. 499-5066 
504 |a Kornblihtt, A.R., Promoter usage and alternative splicing (2005) Curr Opin Cell Biol, 17 (3), pp. 262-2688 
504 |a Zorio, D.A., Bentley, D.L., The link between mRNA processing and transcription: Communication works both ways (2004) Exp Cell Res, 296 (1), pp. 91-977 
504 |a Neugebauer, K.M., On the importance of being co-transcriptional (2002) J Cell Sci, 115 (PART 20), pp. 3865-38711 
504 |a Proudfoot, N.J., Furger, A., Dye, M.J., Integrating mRNA processing with transcription (2002) Cell, 108 (4), pp. 501-5122 
504 |a Beyer, A.L., Osheim, Y.N., Splice site selection, rate of splicing, and alternative splicing on nascent transcripts (1988) Genes Dev, 2 (6), pp. 754-7655 
504 |a Tennyson, C.N., Klamut, H.J., Worton, R.G., The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced (1995) Nat Genet, 9 (2), pp. 184-1900 
504 |a Pandya-Jones, A., Black, D.L., Co-transcriptional splicing of constitutive and alternative exons (2009) RNA, 15, pp. 1896-19088 
504 |a Bauren, G., Wieslander, L., Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription (1994) Cell, 76 (1), pp. 183-1922 
504 |a De La Mata, M., Lafaille, C., Kornblihtt, A.R., First come, first served revisited: Factors affecting the same alternative splicing events have different effects on the relative rates of intron removal (2010) RNA, 16, pp. 904-9122 
504 |a Lazarev, D., Manley, J.L., Concurrent splicing and transcription are not sufficient to enhance splicing efficiency (2007) RNA, 13, pp. 1546-15577 
504 |a Perales, R., Bentley, D., "Cotranscriptionality": The transcription elongation complex as a Nexus for nuclear transactions (2009) Mol Cell, 36, pp. 178-1911 
504 |a Alexander, R.D., Innocente, S.A., Barrass, J.D., Beggs, J.D., Splicing-dependent RNA Polymerase pausing in yeast (2010) Mol Cell, 40, pp. 582-5933 
504 |a Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., Fu, X.D., The splicing factor SC35 has an active role in transcriptional elongation (2008) Nat Struct Mol Biol, 15 (8), pp. 819-8266 
504 |a Carrillo Oesterreich, F., Preibisch, S., Neugebauer, K.M., Global analysis of nascent RNA reveals transcriptional pausing in terminal exons (2010) Mol Cell, 40, pp. 571-5811 
504 |a Smale, S.T., Tjian, R., Transcription of herpes simplex virus tk sequences under the control of wild-type and mutant human RNA polymerase i promoters (1985) Mol Cell Biol, 5 (2), pp. 352-3622 
504 |a Sisodia, S.S., Sollner-Webb, B., Cleveland, D.W., Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation (1987) Mol Cell Biol, 7 (10), pp. 3602-36122 
504 |a McCracken, S., Rosonina, E., Fong, N., Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing (1998) Cold Spring Harb Symp Quant Biol, 63, pp. 301-3099 
504 |a Dower, K., Rosbash, M., T7 RNA polymerase-directed transcripts are processed in yeast and link 30 end formation to mRNA nuclear export (2002) RNA, 8 (5), pp. 686-6977 
504 |a Hicks, M.J., Yang, C.R., Kotlajich, M.V., Hertel, K.J., Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns (2006) PLoS Biol, 4 (6), pp. e1477 
504 |a Das, R., Dufu, K., Romney, B., Feldt, M., Elenko, M., Reed, R., Functional coupling of RNAP II transcription to spliceosome assembly (2006) Genes Dev, 20 (9), pp. 1100-11099 
504 |a Das, R., Yu, J., Zhang, Z., Gygi, M.P., Krainer, A.R., Gygi, S.P., Reed, R., SR proteins function in coupling RNAP II trancription to pre-mRNA splicing (2007) Mol Cell, 26, pp. 867-8811 
504 |a Misteli, T., Spector, D.L., RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo (1999) Mol Cell, 3 (6), pp. 697-7055 
504 |a McCracken, S., Fong, N., Yankulov, K., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385 (6614), pp. 357-3611 
504 |a Zeng, C., Berget, S.M., Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing (2000) Mol Cell Biol, 20 (21), pp. 8290-83011 
504 |a Hirose, Y., Tacke, R., Manley, J.L., Phosphorylated RNA polymerase II stimulates premRNA splicing (1999) Genes Dev, 13 (10), pp. 1234-12399 
504 |a Dye, M.J., Gromak, N., Proudfoot, N.J., Exon tethering in transcription by RNA polymerase II (2006) Mol Cell, 21 (6), pp. 849-8599 
504 |a Sims III, R.J., Belotserkovskaya, R., Reinberg, D., Elongation by RNA polymerase II: The short and long of it (2004) Genes Dev, 18 (20), pp. 2437-24688 
504 |a Breaking barriers to transcription elongation (2006) Nat Rev Mol Cell Biol, 7 (8), pp. 557-5677. , Saunders A, Core LJ, Lis JT 
504 |a Muñoz, M.J., De La Mata, M., Kornblihtt, A.R., The carboxy terminal domain of RNA polymerase II and alternative splicing (2010) Trends Biochem Sci, 35, pp. 497-5044 
504 |a Xu, Y.X., Hirose, Y., Zhou, X.Z., Lu, K.P., Manley, J.L., Pin1 modulates the structure and function of human RNA polymerase II (2003) Genes Dev, 17 (22), pp. 2765-27766 
504 |a Bird, G., Zorio, D.A., Bentley, D.L., RNA Polymerase II Carboxy-Terminal domain phosphorylation is required for Cotranscriptional Pre-mRNA Splicing and 30-End formation (2004) Mol Cell Biol, 24 (20), pp. 8963-89699 
504 |a De La Mata, M., Kornblihtt, A.R., Pol II CTD mediates SRp20 regulation of alternative splicing (2006) Nat Struct Mol Biol, 13 (11), pp. 973-9800 
504 |a Laurencikiene, J., Kallman, A.M., Fong, N., Bentley, D.L., Ohman, M., RNA editing and alternative splicing: The importance of co-transcriptional coordination (2006) EMBO Rep, 7 (3), pp. 303-3077 
504 |a Rosonina, E., Blencowe, B.J., Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 30-end cleavage (2004) RNA, 10 (4), pp. 581-5899 
504 |a Sims III, R.J., Millhouse, S., Chen, C.F., Lewis, B.A., Erdjument-Bromage, H., Tempst, P., Manley, J.L., Reinberg, D., Recognition of Trimethylated Histone H3 Lysine 4 facilitates the recruitment of transcription postinitiation factors and Pre-mRNA splicing (2007) Mol Cell, 28, pp. 665-6766 
504 |a Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Misteli, T., Regulation of alternative splicing by histone modifications (2010) Science, 327, pp. 996-10000 
504 |a Edmunds, J.W., Mahadevan, L.C., Clayton, A.L., Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation (2008) EMBO J, 27, pp. 406-4200 
504 |a Krogan, N.J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V., Richards, D.P., Greenblatt, J., Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II (2003) Mol Cell Biol, 23 (12), pp. 4207-42188 
504 |a Cramer, P., Pesce, C.G., Baralle, F.E., Kornblihtt, A.R., Functional association between promoter structure and transcript alternative splicing (1997) Proc Natl Acad Sci U S A, 94 (21), pp. 11456-114600 
504 |a Cramer, P., Caceres, J.F., Cazalla, D., Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol Cell, 4 (2), pp. 251-2588 
504 |a Auboeuf, D., Honig, A., Berget, S.M., O'Malley, B.W., Coordinate regulation of transcription and splicing by steroid receptor coregulators (2002) Science, 298 (5592), pp. 416-4199 
504 |a Pagani, F., Stuani, C., Zuccato, E., Kornblihtt, A.R., Baralle, F.E., Promoter architecture modulates CFTR exon 9 skipping (2003) J Biol Chem, 278 (3), pp. 1511-15177 
504 |a Robson-Dixon, N.D., Garcia-Blanco, M.A., MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb (2004) J Biol Chem, 279 (28), pp. 29075-290844 
504 |a Nogues, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., Transcriptional activators differ in their abilities to control alternative splicing (2002) J Biol Chem, 277 (45), pp. 43110-431144 
504 |a Rosonina, E., Bakowski, M.A., McCracken, S., Blencowe, B.J., Transcriptional activators control splicing and 30-end cleavage levels (2003) J Biol Chem, 278 (44), pp. 43034-430400 
504 |a Auboeuf, D., Dowhan, D.H., Kang, Y.K., Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes (2004) Proc Natl Acad Sci U S A, 101 (8), pp. 2270-22744 
504 |a Auboeuf, D., Dowhan, D.H., Li, X., CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing (2004) Mol Cell Biol, 24 (1), pp. 442-4533 
504 |a Kotovic, K.M., Lockshon, D., Boric, L., Neugebauer, K.M., Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast (2003) Mol Cell Biol, 23 (16), pp. 5768-57799 
504 |a Lacadie, S.A., Rosbash, M., Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:50ss base pairing in yeast (2005) Mol Cell, 19 (1), pp. 65-755 
504 |a Gornemann, J., Kotovic, K.M., Hujer, K., Neugebauer, K.M., Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex (2005) Mol Cell, 19 (1), pp. 53-633 
504 |a Listerman, I., Sapra, A.K., Neugebauer, K.M., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat Struct Mol Biol, 13 (9), pp. 815-8222 
504 |a Lai, M.C., Teh, B.H., Tarn, W.Y., A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing (1999) J Biol Chem, 274 (17), pp. 11832-118411 
504 |a Monsalve, M., Wu, Z., Adelmant, G., Puigserver, P., Fan, M., Spiegelman, B.M., Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1 (2000) Mol Cell, 6 (2), pp. 307-3166 
504 |a Guillouf, C., Gallais, I., Moreau-Gachelin, F., Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding-dependent manner (2006) J Biol Chem, 281 (28), pp. 19145-191555 
504 |a Davies, R.C., Calvio, C., Bratt, E., Larsson, S.H., Lamond, A.I., Hastie, N.D., WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes (1998) Genes Dev, 12 (20), pp. 3217-32255 
504 |a Nayler, O., Stratling, W., Bourquin, J.P., SAF-B protein couples transcription and premRNA splicing to SAR/MAR elements (1998) Nucleic Acids Res, 26 (15), pp. 3542-35499 
504 |a Goldstrohm, A.C., Albrecht, T.R., Sune, C., Bedford, M.T., Garcia-Blanco, M.A., The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1 (2001) Mol Cell Biol, 21 (22), pp. 7617-76288 
504 |a Lin, K.T., Lu, R.M., Tarn, W.Y., The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo (2004) Mol Cell Biol, 24 (20), pp. 9176-91855 
504 |a Yuryev, A., Patturajan, M., Litingtung, Y., The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins (1996) Proc Natl Acad Sci U S A, 93 (14), pp. 6975-69800 
504 |a Young, J.I., Hong, E.P., Castle, J.C., Regulation of RNA splicing by the methylationdependent transcriptional repressor methyl-CpG binding protein 2 (2005) Proc Natl Acad Sci U S A., 102 (49), pp. 17551-175588 
504 |a Millhouse, S., Manley, J.L., The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein (2005) Mol Cell Biol, 25 (2), pp. 533-5444 
504 |a Sato, S., Tomomori-Sato, C., Parmely, T.J., A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology (2004) MolCell, 14 (5), pp. 685-6911 
504 |a Eperon, L.P., Graham, I.R., Griffiths, A.D., Eperon, I.C., Effects of RNA secondary structure on alternative splicing of pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase? (1988) Cell, 54 (3), pp. 393-4011 
504 |a Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J., Smith, C.W., Co-transcriptional commitment to alternative splice site selection (1998) Nucleic Acids Res, 26 (24), pp. 5568-55722 
504 |a Kadener, S., Cramer, P., Nogues, G., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J, 20 (20), pp. 5759-57688 
504 |a Kadener, S., Fededa, J.P., Rosbash, M., Kornblihtt, A.R., Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation (2002) Proc Natl Acad Sci U S A, 99 (12), pp. 8185-81900 
504 |a Nogues, G., Munoz, M.J., Kornblihtt, A.R., Influence of polymerase II processivity on alternative splicing depends on splice site strength (2003) J Biol Chem, 278 (52), pp. 52166-521711 
504 |a De La Mata, M., Alonso, C.R., Kadener, S., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol Cell, 12 (2), pp. 525-5322 
504 |a Howe, K.J., Kane, C.M., Ares Jr., M., Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae (2003) RNA, 9 (8), pp. 993-10066 
504 |a Lorincz, M.C., Dickerson, D.R., Schmitt, M., Groudine, M., Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells (2004) Nat Struct Mol Biol, 11 (11), pp. 1068-10755 
504 |a Batsche, E., Yaniv, M., Muchardt, C., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat Struct Mol Biol, 13 (1), pp. 22-299 
504 |a Kornblihtt, A.R., Chromatin, transcript elongation and alternative splicing (2006) Nat Struct Mol Biol, 13 (1), pp. 5-77 
504 |a Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc Natl Acad Sci USA, 106 (11), pp. 4325-43300 
504 |a Alló, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., De La Mata, M., Agirre, E., Kornblihtt, A.R., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat Struct Mol Biol, 16 (7), pp. 717-7244 
504 |a Suzuki, K., Juelich, T., Lim, H., Ishida, T., Watanebe, T., Cooper, D.A., Rao, S., Kelleher, A.D., Closed Chromatin architecture Is induced by an RNA Duplex targeting the HIV-1 promoter region (2008) J Biol Chem, 283, pp. 23353-233633 
504 |a Kim, D.H., Villeneuve, L.M., Morris, K.V., Rossi, J.J., Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells (2006) Nat Struct Mol Biol, 13, pp. 793-7977 
504 |a Morris, K.V., Chan, S.W., Jacobsen, S.E., Looney, D.J., Small interfering RNA-induced transcriptional gene silencing in human cells (2004) Science, 305, pp. 1289-12922 
504 |a Schwartz, S., Meshorer, E., Ast, G., Chromatin organization marks exon-intron structure (2009) Nat Struct Mol Biol, 16 (9), pp. 990-9955 
504 |a Tilgner, H., Nikolaou, C., Althammer, S., Sammeth, M., Beato, M., Valcárcel, J., Guigó, R., Nucleosome positioning as a determinant of exon recognition (2009) Nat Struct Mol Biol, 16 (9), pp. 996-10011 
504 |a Kolosinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S., Ahringer, J., Differential chromatin marking of introns and expressed exons by H3K36me3 (2009) Nat Genet, 41 (3), pp. 376-3811 
504 |a Yang, L., Embree, L.J., Hickstein, D.D., TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins (2000) Mol Cell Biol, 20 (10), pp. 3345-33544 
520 3 |a The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulation of alternative splicing. Evidence of a functional coupling between splicing and transcription has recently emerged as it was observed that properties of one process may affect the outcome of the other. Co-transcriptionality is thought to improve splicing efficiency and kinetics by directing the nascent pre-mRNA into proper spliceosome assembly and favoring splicing factor recruitment. Two models have been proposed to explain the coupling of transcription and alternative splicing: in the recruitment model, promoters and pol II status affect the recruitment to the transcribing gene of splicing factors or bifunctional factors acting on both transcription and splicing; in the kinetic model, differences in the elongation rate of pol II would determine the timing in which splicing sites are presented, and thus the outcome of alternative splicing decisions. In the later model, chromatin structure has emerged as a key regulator. Although definitive evidence for transcriptionally coupled alternative splicing alterations in tumor development or cancer pathogenesis is still missing, many alternative splicing events altered in cancer might be subject to transcription-splicing coupling regulation. © 2013 Springer-Verlag Berlin Heidelberg.  |l eng 
593 |a Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, Universidad de Buenos Aires, 20 Piso, Buenos Aires 1428, Argentina 
690 1 0 |a ALTERNATIVE SPLICING 
690 1 0 |a CHROMATIN 
690 1 0 |a CO-TRANSCRIPTIONAL SPLICING 
690 1 0 |a KINETIC MODEL 
690 1 0 |a RNA POLYMERASE II-CTD 
690 1 0 |a TRANSCRIPTION-SPLICING COUPLING 
690 1 0 |a MESSENGER RNA 
690 1 0 |a RNA POLYMERASE II 
690 1 0 |a ALTERNATIVE RNA SPLICING 
690 1 0 |a ARTICLE 
690 1 0 |a CARCINOGENESIS 
690 1 0 |a CHROMATIN STRUCTURE 
690 1 0 |a GENETIC TRANSCRIPTION 
690 1 0 |a HUMAN 
690 1 0 |a INTRON 
690 1 0 |a KINETICS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN ASSEMBLY 
690 1 0 |a REGULATORY MECHANISM 
690 1 0 |a RNA TRANSCRIPTION 
690 1 0 |a SPLICEOSOME 
690 1 0 |a TRANSCRIPTION REGULATION 
700 1 |a Gómez Acuña, L.I. 
700 1 |a Kornblihtt, A.R. 
700 1 |a Wu J.Y. 
773 0 |d 2013  |h pp. 1-24  |p Cancer Treat. Res.  |x 09273042  |z 9783642316586  |t Cancer Treatment and Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876583429&doi=10.1007%2f978-3-642-31659-3-1&partnerID=40&md5=033093a94ba4f9e78f6d0685c73be4ce  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-3-642-31659-3-1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09273042_v_n_p1_Schor  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09273042_v_n_p1_Schor  |y Registro en la Biblioteca Digital 
961 |a paper_09273042_v_n_p1_Schor  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85250